2,303 research outputs found

    UTM UAS Service Supplier Specification

    Get PDF
    Within the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) system, the UAS Service Supplier (USS) is a key component. The USS serves several functions. At a high level, those include the following: Bridging communication between UAS Operators and Flight Information Management System (FIMS) Supporting planning of UAS operations Assisting strategic deconfliction of the UTM airspace Providing information support to UAS Operators during operations Helping UAS Operators meet their formal requirements This document provides the minimum set of requirements for a USS. In order to be recognized as a USS within UTM, successful demonstration of satisfying the requirements described herein will be a prerequisite. To ensure various desired qualities (security, fairness, availability, efficiency, maintainability, etc.), this specification relies on references to existing public specifications whenever possible

    Initial Study of an Effective Fast-Time Simulation Platform for Unmanned Aircraft System Traffic Management

    Get PDF
    Small Unmanned Aerial Vehicles (sUAVs), typically 55 lbs and below, are envisioned to play a major role in surveilling critical assets, collecting important information, and delivering goods. Large scale small UAV operations are expected to happen in low altitude airspace in the near future. Many static and dynamic constraints exist in low altitude airspace because of manned aircraft or helicopter activities, various wind conditions, restricted airspace, terrain and man-made buildings, and conflict-avoidance among sUAVs. High sensitivity and high maneuverability are unique characteristics of sUAVs that bring challenges to effective system evaluations and mandate such a simulation platform different from existing simulations that were built for manned air traffic system and large unmanned fixed aircraft. NASA's Unmanned aircraft system Traffic Management (UTM) research initiative focuses on enabling safe and efficient sUAV operations in the future. In order to help define requirements and policies for a safe and efficient UTM system to accommodate a large amount of sUAV operations, it is necessary to develop a fast-time simulation platform that can effectively evaluate requirements, policies, and concepts in a close-to-reality environment. This work analyzed the impacts of some key factors including aforementioned sUAV's characteristics and demonstrated the importance of these factors in a successful UTM fast-time simulation platform

    Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling

    Get PDF
    Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons

    Fe(3): An Evaluation Tool for Low-Altitude Air Traffic Operations

    Get PDF
    The concepts of unmanned aircraft system traffic management (UTM) and urban air mobility (UAM) are introducing high-density operations in low altitude airspace in closer proximity to populated areas than conventional high-altitude air traffic. The Flexible engine for Fast-time Evaluation of Flight Environments (Fe (sup 3)) provides the capability of statistically analyzing the high-density, high-fidelity, and low-altitude traffic system under numerous scenarios, such that stake holders can study impacts of factors in the low-altitude high-density traffic system and define requirements, policies, and protocols needed to support a safe yet efficient traffic system, and even assess operational risks and optimize flight schedules without conducting infeasible and cost-prohibitive flight tests that involve a large volume of aerial vehicles. This work provides an introduction to this simulation tool including its architecture and various models involved. Its performance and sample application in UAM and UTM are also presented

    Digital TMI

    Get PDF
    Presenting the current status of the Digital TMI project to visiting members of the FAA Command Center. Digital TMI is an effort to store national-level traffic management initiatives in a standards-compliant manner. Work is funded by the FAA

    Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    Get PDF
    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated coverage. Both would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. UTM is creating an airspace management tool that allows the ATM system to accommodate the number of UAS that will operate in the low altitude airspace. The analogy is just because we have a car, whether its autonomous or someone is driving, does not diminish the need for a road or road signs or rules of the road

    Demographic Change and the Structure of Wages: A Demand-Theoretic Analysis for Brazil

    Get PDF
    With rapidly declining fertility and increased longevity the age structure of the labor force in developing countries has changed rapidly. Changing relative supply of workers by age group, and by educational attainment, can have profound effects on labor costs. Their impacts on earnings have been heavily studied in the United States but have received little attention in Asia and Latin America, where supply shocks are at least as large and have often proceeded less evenly across the economy. We use data on 502 local Brazilian labor markets from Censuses 1970-2000 to examine the extent of substitution among demographic groups as relative supply has changed. The results suggest that age-education groups are imperfect substitutes, so that larger age-education cohorts see depressed wage rates, particularly among more-educated groups. The extent of substitution has increased over time, so that the decreasing size of the least-skilled labor force today is barely raising its remaining members' wages.

    Remote ID for Rapid Assessment of Flight and Vehicle Information

    Get PDF
    The ability to rapidly identify UAS (Unmanned Aircraft Systems) in the field has emerged as a critical need for the integration of small UASs into the national airspace and counter-UAS operations. This paper proposes an architecture for rapid retrieval of UAS information leveraging NASA's current Unmanned Aircraft System (UAS) Traffic Management (UTM) system. The proposed architecture utilizes UTM components: FIMS (Flight Information Management System), USS (UAS Service Supplier), and vehicle registration and model database in order to provide assessment of the UAS reported in the field including the ability to distinguish between participating and non- participating UTM actors. Detailed system descriptions are provided and preliminary results from field tests conducted during UTM TCL (Technical Capability Level) 3 are discussed. It is found that 94 percent of the remote ID look-ups were successful. The average time of a look-up is found to be 1.2 seconds. Failure cases are examined and recommendations on next steps to advance UAS remote identification are provided
    • …
    corecore