25 research outputs found

    Magnetorotational dynamo chimeras. The missing link to turbulent accretion disk dynamo models?

    Full text link
    In Keplerian accretion disks, turbulence and magnetic fields may be jointly excited through a subcritical dynamo process involving the magnetorotational instability (MRI). High-resolution simulations exhibit a tendency towards statistical self-organization of MRI dynamo turbulence into large-scale cyclic dynamics. Understanding the physical origin of these structures, and whether they can be sustained and transport angular momentum efficiently in astrophysical conditions, represents a significant theoretical challenge. The discovery of simple periodic nonlinear MRI dynamo solutions has recently proven useful in this respect, and has notably served to highlight the role of turbulent magnetic diffusion in the seeming decay of the dynamics at low magnetic Prandtl number Pm (magnetic diffusivity larger than viscosity), a common regime in accretion disks. The connection between these simple structures and the statistical organization reported in turbulent simulations remained elusive, though. Here, we report the numerical discovery in moderate aspect ratio Keplerian shearing boxes of new periodic, incompressible, three-dimensional nonlinear MRI dynamo solutions with a larger dynamical complexity reminiscent of such simulations. These "chimera" cycles are characterized by multiple MRI-unstable dynamical stages, but their basic physical principles of self-sustainment are nevertheless identical to those of simpler cycles found in azimuthally elongated boxes. In particular, we find that they are not sustained at low Pm either due to subcritical turbulent magnetic diffusion. These solutions offer a new perspective into the transition from laminar to turbulent instability-driven dynamos, and may prove useful to devise improved statistical models of turbulent accretion disk dynamos.Comment: 12 pages, 8 figures, submitted to A&

    Dissipative effects on the sustainment of a magnetorotational dynamo in Keplerian shear flow

    Get PDF
    The magnetorotational (MRI) dynamo has long been considered one of the possible drivers of turbulent angular momentum transport in astrophysical accretion disks. However, various numerical results suggest that this dynamo may be difficult to excite in the astrophysically relevant regime of magnetic Prandtl number (Pm) significantly smaller than unity, for reasons currently not well understood. The aim of this article is to present the first results of an ongoing numerical investigation of the role of both linear and nonlinear dissipative effects in this problem. Combining a parametric exploration and an energy analysis of incompressible nonlinear MRI dynamo cycles representative of the transitional dynamics in large aspect ratio shearing boxes, we find that turbulent magnetic diffusion makes the excitation and sustainment of this dynamo at moderate magnetic Reynolds number (Rm) increasingly difficult for decreasing Pm. This results in an increase in the critical Rm of the dynamo for increasing kinematic Reynolds number (Re), in agreement with earlier numerical results. Given its very generic nature, we argue that turbulent magnetic diffusion could be an important determinant of MRI dynamo excitation in disks, and may also limit the efficiency of angular momentum transport by MRI turbulence in low Pm regimes.Comment: 7 pages, 6 figure

    Global bifurcations to subcritical magnetorotational dynamo action in Keplerian shear flow

    Get PDF
    Magnetorotational dynamo action in Keplerian shear flow is a three-dimensional, non-linear magnetohydrodynamic process whose study is relevant to the understanding of accretion processes and magnetic field generation in astrophysics. Transition to this form of dynamo action is subcritical and shares many characteristics of transition to turbulence in non-rotating hydrodynamic shear flows. This suggests that these different fluid systems become active through similar generic bifurcation mechanisms, which in both cases have eluded detailed understanding so far. In this paper, we build on recent work on the two problems to investigate numerically the bifurcation mechanisms at work in the incompressible Keplerian magnetorotational dynamo problem in the shearing box framework. Using numerical techniques imported from dynamical systems research, we show that the onset of chaotic dynamo action at magnetic Prandtl numbers larger than unity is primarily associated with global homoclinic and heteroclinic bifurcations of nonlinear magnetorotational dynamo cycles. These global bifurcations are found to be supplemented by local bifurcations of cycles marking the beginning of period-doubling cascades. The results suggest that nonlinear magnetorotational dynamo cycles provide the pathway to turbulent injection of both kinetic and magnetic energy in incompressible magnetohydrodynamic Keplerian shear flow in the absence of an externally imposed magnetic field. Studying the nonlinear physics and bifurcations of these cycles in different regimes and configurations may subsequently help to better understand the physical conditions of excitation of magnetohydrodynamic turbulence and instability-driven dynamos in a variety of astrophysical systems and laboratory experiments. The detailed characterization of global bifurcations provided for this three-dimensional subcritical fluid dynamics problem may also prove useful for the problem of transition to turbulence in hydrodynamic shear flows

    Spontaneous ring formation in wind-emitting accretion discs

    No full text
    International audienceRings and gaps have been observed in a wide range of proto-planetary discs, from young systems like HLTau to older discs like TW Hydra. Recent disc simulations have shown that magnetohydrodynamic (MHD) turbulence (in both the ideal or non-ideal regime) can lead to the formation of rings and be an alternative to the embedded planets scenario. In this paper, we have investigated the way in which these ring form in this context and seek a generic formation process, taking into account the various dissipative regimes and magnetisations probed by the past simulations. We identify the existence of a linear and secular instability, driven by MHD winds, and giving birth to rings of gas that have a width larger than the disc scale height. We show that the linear theory is able to make reliable predictions regarding the growth rates, the contrast and spacing between ring and gap, by comparing these predictions to a series of 2D (axisymmetric) and 3D MHD numerical simulations. In addition, we demonstrate that these rings can act as dust traps provided that the disc is sufficiently magnetised, with plasma beta lower than 104. Given its robustness, the process identified in this paper could have important implications, not only for proto-planetary discs but also for a wide range of accreting systems threaded by large-scale magnetic fields.Key words: accretion, accretion disks / protoplanetary disks / magnetohydrodynamics (MHD) / instabilities / turbulenc

    Dust settling and rings in the outer regions of protoplanetary discs subject to ambipolar diffusion

    No full text
    International audienceContext. Magnetohydrodynamic (MHD) turbulence plays a crucial role in the dust dynamics of protoplanetary discs. It affects planet formation, vertical settling, and is one possible origin of the large scale axisymmetric structures, such as rings, recently imaged by ALMA and SPHERE. Among the variety of MHD processes in discs, the magnetorotational instability (MRI) has raised particular interest since it provides a source of turbulence and potentially organizes the flow into large scale structures. However, the weak ionization of discs prevents the MRI from being excited beyond 1 AU. Moreover, the low velocity dispersion observed in CO and strong sedimentation of millimetre dust measured in T-Tauri discs are in contradiction with predictions based on ideal MRI turbulence.Aims. In this paper, we study the effects of non-ideal MHD and magnetized winds on the dynamics and sedimentation of dust grains. We consider a weakly ionized plasma subject to ambipolar diffusion characterizing the disc outer regions (≫1 AU).Methods. To compute the dust and gas motions, we performed numerical MHD simulations in the stratified shearing box, using a modified version of the PLUTO code. We explored different grain sizes from micrometre to few centimetres and different disc vertical magnetizations with plasma beta ranging from 103 to 105.Results. Our simulations show that the mm-cm dust is contained vertically in a very thin layer, with typical heightscale ≲0.4 AU at R = 30 AU, compatible with recent ALMA observations. Horizontally, the grains are trapped within the pressure maxima (or zonal flows) induced by ambipolar diffusion, leading to the formation of dust rings. For micrometre grains and strong magnetization, we find that the dust layer has a size comparable to the disc heightscale H. In this regime, dust settling cannot be explained by a simple 1D diffusion theory but results from a large scale 2D circulation induced by both MHD winds and zonal flows.Conclusions. Our results suggest that non-ideal MHD effects and MHD winds associated with zonal flows play a major role in shaping the radial and vertical distribution of dust in protoplanetary discs. Leading to effective accretion efficiency α ≃ 10−3–10−1, non-ideal MHD models are also a promising avenue to reconcile the low turbulent activity measured in discs with their relatively high accretion rates

    Ring formation and dust dynamics in wind-driven protoplanetary discs: global simulations

    No full text
    Large-scale vertical magnetic fields are believed to play a key role in the evolution of protoplanetary discs. Associated with non-ideal effects, such as ambipolar diffusion, they are known to launch a wind that could drive accretion in the outer part of the disc (R>1R> 1 AU). They also potentially lead to self-organisation of the disc into large-scale axisymmetric structures, similar to the rings recently imaged by sub-millimetre or near-infrared instruments (ALMA and SPHERE). The aim of this paper is to investigate the mechanism behind the formation of these gaseous rings, but also to understand the dust dynamics and its emission in discs threaded by a large-scale magnetic field. To this end, we performed global magneto-hydrodynamics (MHD) axisymmetric simulations with ambipolar diffusion using a modified version of the PLUTO code. We explored different magnetisations with the midplane β\beta parameter ranging from 10510^5 to 10310^3 and included dust grains -- treated in the fluid approximation -- ranging from 100μ100 \mum to 1 cm in size. We first show that the gaseous rings (associated with zonal flows) are tightly linked to the existence of MHD winds. Secondly, we find that millimetre-size dust is highly sedimented, with a typical scale height of 1 AU at R=100R=100 AU for β=104\beta=10^4, compatible with recent ALMA observations. We also show that these grains concentrate into pressure maxima associated with zonal flows, leading to the formation of dusty rings. Using the radiative transfer code MCFOST, we computed the dust emission and make predictions on the ring-gap contrast and the spectral index that one might observe with interferometers like ALMA

    Dust dynamics and vertical settling in gravitoturbulent protoplanetary discs

    No full text
    Abstract Gravitational instability (GI) controls the dynamics of young massive protoplanetary discs. Apart from facilitating gas accretion on to the central protostar, it must also impact on the process of planet formation: directly through fragmentation, and indirectly through the turbulent concentration of small solids. To understand the latter process, it is essential to determine the dust dynamics in gravitoturbulent flow. For that purpose, we conduct a series of 3D shearing box simulations of coupled gas and dust, including the gas’s self-gravity and scanning a range of Stokes numbers, from 10 −3 to ∼0.2. First, we show that the vertical settling of dust in the mid-plane is significantly impeded by gravitoturbulence, with the dust scale height roughly 0.6 times the gas scale height for centimetre grains. This is a result of the strong vertical diffusion issuing from (i) small-scale inertial-wave turbulence feeding off the GI spiral waves and (ii) the larger scale vertical circulations that naturally accompany the spirals. Second, we show that at R  = 50 au concentration events involving submetre particles and yielding order 1 dust-to-gas ratios are rare and last for less than an orbit. Moreover, dust concentration is less efficient in 3D than in 2D simulations. We thus conclude that GI is not especially prone to the turbulent accumulation of dust grains. Finally, the large dust scale height measured in simulations could be, in the future, compared with that of edge-on discs seen by ALMA, thus aiding detection and characterization of GI in real systems.</jats:p

    Gravito-turbulence and dynamo in poorly ionized protostellar discs – I. Zero-net-flux case

    No full text
    International audienceIn their early stages, protoplanetary discs are sufficiently massive to undergo gravitational instability (GI). This instability is thought to be involved in mass accretion, planet formation via gas fragmentation, the generation of spiral density waves, and outbursts. A key and very recent area of research is the interaction between the GI and magnetic fields in young protoplanetary discs, in particular whether this instability is able to sustain a magnetic field via a dynamo. We conduct 3D, stratified shearing-box simulations using two independent codes, PLUTO and Athena++, to characterize the GI dynamo in poorly ionized protostellar discs subject to ambipolar diffusion. We find that the dynamo operates across a large range of ambipolar Elssaser number Am (which characterizes the strength of ambipolar diffusion) and is particularly strong in the regime Am = 10–100, with typical magnetic to thermal energy ratios of order unity. The dynamo is only weakly dependent on resolution (at least for Am ≲ 100), box size, and cooling law. The magnetic field is produced by the combination of differential rotation and large-scale vertical roll motions associated with spiral density waves. Our results have direct implications for the dynamo process in young protoplanetary discs and possibly some regions of active galactic nucleus discs
    corecore