549 research outputs found

    Dark Matter and Dark Forces from a supersymmetric hidden sector

    Full text link
    We show that supersymmetric "Dark Force" models with gravity mediation are viable. To this end, we analyse a simple string-inspired supersymmetric hidden sector model that interacts with the visible sector via kinetic mixing of a light Abelian gauge boson with the hypercharge. We include all induced interactions with the visible sector such as neutralino mass mixing and the Higgs portal term. We perform a detailed parameter space scan comparing the produced dark matter relic abundance and direct detection cross sections to current experiments.Comment: 40 pages, 11 figures comprising 21 plots. 4Mb total size. v2: figures and references updated; typos removed; some extra explanations added. Matches version published in PR

    Axion cosmology, lattice QCD and the dilute instanton gas

    Get PDF
    Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T)\chi(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T)\chi(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.Comment: 9 pages, 7 figure

    QU Carinae: a SNeIa progenitor?

    Get PDF
    Optical spectra obtained in 2006-07 of the nova-like cataclysmic variable QU Car are studied for radial velocities, line profiles, and line identifications. We are not able to confirm the reported 10.9 hr orbital period from 1982,partly because our sampling is not ideal for this purpose and also, we suspect, because our radial velocities are distorted by line profile changes due to an erratic wind. P-Cygni profiles are found in several of the emission lines, including those of C IV. Carbon lines are abundant in the spectra, suggesting a carbon enrichment in the doner star. The presence of [O III] 5007\AA and [N II] 6584\AA is likely due to a diffuse nebula in the vicinity of the system. The wind signatures in the spectra and the presence of nebular lines are in agreement with the accretion wind evolution scenario that has been suggested to lead to SNeIa. We argue that QU Car is a member of the V Sge subclass of CVs, and a possible SNeIa progenitor. It is shown that the recent light curve of QU Car has ~1 mag low states, similar to the light curve of V Sge, strengthening the connection of QU Car with V Sge stars, supersoft x-ray sources, and SNeIa progenitors.Comment: Accepted in the Astronomical Journal. 11 pages, 3 tables, 5 figure

    The Orbital Period of BK Lyncis (PG 0917 + 342)

    Get PDF
    Long-term light curves of the cataclysmic variable BK Lyn = PG 0917 + 342 from the Indiana Automated CCD photometric telescope (‘RoboScope’) and the Harvard College Observatory plate archive reveal no dwarf nova outbursts. Two radial velocity studies show its orbital period to be 107.97 ;1 0.07 min, confirming that it does have an orbital period shorter than the period gap for cataclysmic variables. Whether this is the first nova-like variable below the period gap or a dwarf nova with rare outbursts resembling WZ Sge is still unclear, however

    The Origin of Soft X-rays in DQ Herculis

    Full text link
    DQ Herculis (Nova Herculis 1934) is a deeply eclipsing cataclysmic variable containing a magnetic white dwarf primary. The accretion disk is thought to block our line of sight to the white dwarf at all orbital phases due to its extreme inclination angle. Nevertheless, soft X-rays were detected from DQ Her with ROSAT PSPC. To probe the origin of these soft X-rays, we have performed Chandra ACIS observations. We confirm that DQ Her is an X-ray source. The bulk of the X-rays are from a point-like source and exhibit a shallow partial eclipse. We interpret this as due to scattering of the unseen central X-ray source, probably in an accretion disk wind. At the same time, we observe what appear to be weak extended X-ray features around DQ Her, which we interpret as an X-ray emitting knot in the nova shell.Comment: 18 pages including 4 figures, accepted for publication in Astrphyisical Journa

    Infrared Properties of Cataclysmic Variables from 2MASS: Results from the 2nd Incremental Data Release

    Full text link
    Because accretion-generated luminosity dominates the radiated energy of most cataclysmic variables, they have been ``traditionally'' observed primarily at short wavelengths. Infrared observations of cataclysmic variables contribute to the understanding of key system components that are expected to radiate at these wavelengths, such as the cool outer disk, accretion stream, and secondary star. We have compiled the J, H, and Ks photometry of all cataclysmic variables located in the sky coverage of the 2 Micron All Sky Survey (2MASS) 2nd Incremental Data Release. This data comprises 251 systems with reliably identified near-IR counterparts and S/N > 10 photometry in one or more of the three near-IR bands.Comment: 2 pages, including 1 figure. To appear in the proceedings of The Physics of Cataclysmic Variables and Related Objects, Goettingen, Germany. For our followup ApJ paper (in press), also see http://www.ctio.noao.edu/~hoard/research/2mass/index.htm

    Topography of the hot sphaleron Transitions

    Full text link
    By numerical simulations in {\it real time} we provide evidence in favour of sphaleron like transitions in the hot, symmetric phase of the electroweak theory. Earlier performed observations of a change in the Chern-Simons number are supplemented with a measurement of the lowest eigenvalues of the three-dimensional staggered fermion Dirac operator and observations of the spatial extension of energy lumps associated with the transition. The observations corroborate on the interpretation of the change in Chern-Simons numbers as representing continuum physics, not lattice artifacts. By combining the various observations it is possible to follow in considerable detail the time-history of thermal fluctuations of the classical gauge-field configurations responsible for the change in the Chern-Simons number.Comment: 11 pages. No figures (sorry, but ps files too huge). Latex file. NBI-HE-92-5

    Can the Copernican principle be tested by cosmic neutrino background?

    Full text link
    The Copernican principle, stating that we do not occupy any special place in our universe, is usually taken for granted in modern cosmology. However recent observational data of supernova indicate that we may live in the under-dense center of our universe, which makes the Copernican principle challenged. It thus becomes urgent and important to test the Copernican principle via cosmological observations. Taking into account that unlike the cosmic photons, the cosmic neutrinos of different energies come from the different places to us along the different worldlines, we here propose cosmic neutrino background as a test of the Copernican principle. It is shown that from the theoretical perspective cosmic neutrino background can allow one to determine whether the Copernican principle is valid or not, but to implement such an observation the larger neutrino detectors are called for.Comment: JHEP style, 10 pages, 4 figures, version to appear in JCA

    External Fields as a Probe for Fundamental Physics

    Full text link
    Quantum vacuum experiments are becoming a flexible tool for investigating fundamental physics. They are particularly powerful for searching for new light but weakly interacting degrees of freedom and are thus complementary to accelerator-driven experiments. I review recent developments in this field, focusing on optical experiments in strong electromagnetic fields. In order to characterize potential optical signatures, I discuss various low-energy effective actions which parameterize the interaction of particle-physics candidates with optical photons and external electromagnetic fields. Experiments with an electromagnetized quantum vacuum and optical probes do not only have the potential to collect evidence for new physics, but special-purpose setups can also distinguish between different particle-physics scenarios and extract information about underlying microscopic properties.Comment: 12 pages, plenary talk at QFEXT07, Leipzig, September 200

    Heisenberg-picture approach to the evolution of the scalar fields in an expanding universe

    Get PDF
    We present the Heisenberg-picture approach to the quantum evolution of the scalar fields in an expanding FRW universe which incorporates relatively simply the initial quantum conditions such as the vacuum state, the thermal equilibrium state, and the coherent state. We calculate the Wightman function, two-point function, and correlation function of a massive scalar field. We find the quantum evolution of fluctuations of a self-interacting field perturbatively and discuss the renormalization of field equations.Comment: 15 pages, RevTeX, no figure
    • …
    corecore