35 research outputs found

    Theoretical analysis of quantum dynamics in 1D lattices: Wannier-Stark description

    Get PDF
    This papers presents a formalism describing the dynamics of a quantum particle in a one-dimensional tilted time-dependent lattice. The description uses the Wannier-Stark states, which are localized in each site of the lattice and provides a simple framework leading to fully-analytical developments. Particular attention is devoted to the case of a time-dependent potential, which results in a rich variety of quantum coherent dynamics is found.Comment: 8 pages, 6 figures, submitted to PR

    Wavepacket reconstruction via local dynamics in a parabolic lattice

    Get PDF
    We study the dynamics of a wavepacket in a potential formed by the sum of a periodic lattice and of a parabolic potential. The dynamics of the wavepacket is essentially a superposition of ``local Bloch oscillations'', whose frequency is proportional to the local slope of the parabolic potential. We show that the amplitude and the phase of the Fourier transform of a signal characterizing this dynamics contains information about the amplitude and the phase of the wavepacket at a given lattice site. Hence, {\em complete} reconstruction of the the wavepacket in the real space can be performed from the study of the dynamics of the system.Comment: 4 pages, 3 figures, RevTex

    Angular momentum extraction by gravity waves in the Sun

    Get PDF
    We review the behavior of the oscillating shear layer produced by gravity waves below the surface convection zone of the Sun. We show that, under asymmetric filtering produced by this layer, gravity waves of low spherical order, which are stochastically excited at the base of the convection zone of late type stars, can extract angular momentum from their radiative interior. The time-scale for this momentum extraction in a Sun-like star is of the order of 10^7 years. The process is particularly efficient in the central region, and it could produce there a slowly rotating core.Comment: 9 pages, 3 figues, accepted by Astrophysical Journal Letter, 26 June 200

    Quantum Chaos of a particle in a square well : Competing Length Scales and Dynamical Localization

    Full text link
    The classical and quantum dynamics of a particle trapped in a one-dimensional infinite square well with a time periodic pulsed field is investigated. This is a two-parameter non-KAM generalization of the kicked rotor, which can be seen as the standard map of particles subjected to both smooth and hard potentials. The virtue of the generalization lies in the introduction of an extra parameter R which is the ratio of two length scales, namely the well width and the field wavelength. If R is a non-integer the dynamics is discontinuous and non-KAM. We have explored the role of R in controlling the localization properties of the eigenstates. In particular the connection between classical diffusion and localization is found to generalize reasonably well. In unbounded chaotic systems such as these, while the nearest neighbour spacing distribution of the eigenvalues is less sensitive to the nature of the classical dynamics, the distribution of participation ratios of the eigenstates proves to be a sensitive measure; in the chaotic regimes the latter being lognormal. We find that the tails of the well converged localized states are exponentially localized despite the discontinuous dynamics while the bulk part shows fluctuations that tend to be closer to Random Matrix Theory predictions. Time evolving states show considerable R dependence and tuning R to enhance classical diffusion can lead to significantly larger quantum diffusion for the same field strengths, an effect that is potentially observable in present day experiments.Comment: 29 pages (including 14 figures). Better quality of Figs. 1,3 & 9 can be obtained from author

    Reflection and Ducting of Gravity Waves Inside the Sun

    Get PDF
    Internal gravity waves excited by overshoot at the bottom of the convection zone can be influenced by rotation and by the strong toroidal magnetic field that is likely to be present in the solar tachocline. Using a simple Cartesian model, we show how waves with a vertical component of propagation can be reflected when traveling through a layer containing a horizontal magnetic field with a strength that varies with depth. This interaction can prevent a portion of the downward-traveling wave energy flux from reaching the deep solar interior. If a highly reflecting magnetized layer is located some distance below the convection zone base, a duct or wave guide can be set up, wherein vertical propagation is restricted by successive reflections at the upper and lower boundaries. The presence of both upward- and downward-traveling disturbances inside the duct leads to the existence of a set of horizontally propagating modes that have significantly enhanced amplitudes. We point out that the helical structure of these waves makes them capable of generating an alpha-effect, and briefly consider the possibility that propagation in a shear of sufficient strength could lead to instability, the result of wave growth due to over-reflection.Comment: 23 pages, 5 figures. Accepted for publication in Solar Physic

    The evolution of rotating stars

    Full text link
    First, we review the main physical effects to be considered in the building of evolutionary models of rotating stars on the Upper Main-Sequence (MS). The internal rotation law evolves as a result of contraction and expansion, meridional circulation, diffusion processes and mass loss. In turn, differential rotation and mixing exert a feedback on circulation and diffusion, so that a consistent treatment is necessary. We review recent results on the evolution of internal rotation and the surface rotational velocities for stars on the Upper MS, for red giants, supergiants and W-R stars. A fast rotation is enhancing the mass loss by stellar winds and reciprocally high mass loss is removing a lot of angular momentum. The problem of the ``break-up'' or Ω\Omega-limit is critically examined in connection with the origin of Be and LBV stars. The effects of rotation on the tracks in the HR diagram, the lifetimes, the isochrones, the blue to red supergiant ratios, the formation of W-R stars, the chemical abundances in massive stars as well as in red giants and AGB stars, are reviewed in relation to recent observations for stars in the Galaxy and Magellanic Clouds. The effects of rotation on the final stages and on the chemical yields are examined, as well as the constraints placed by the periods of pulsars. On the whole, this review points out that stellar evolution is not only a function of mass M and metallicity Z, but of angular velocity Ω\Omega as well.Comment: 78 pages, 7 figures, review for Annual Review of Astronomy and Astrophysics, vol. 38 (2000

    Immunomagnetic microbeads for screening with flow cytometry and identification with nano-liquid chromatography mass spectrometry of ochratoxins in wheat and cereal

    Get PDF
    Multi-analyte binding assays for rapid screening of food contaminants require mass spectrometric identification of compound(s) in suspect samples. An optimal combination is obtained when the same bioreagents are used in both methods; moreover, miniaturisation is important because of the high costs of bioreagents. A concept is demonstrated using superparamagnetic microbeads coated with monoclonal antibodies (Mabs) in a novel direct inhibition flow cytometric immunoassay (FCIA) plus immunoaffinity isolation prior to identification by nano-liquid chromatography–quadrupole time-of-flight-mass spectrometry (nano-LC-Q-ToF-MS). As a model system, the mycotoxin ochratoxin A (OTA) and cross-reacting mycotoxin analogues were analysed in wheat and cereal samples, after a simple extraction, using the FCIA with anti-OTA Mabs. The limit of detection for OTA was 0.15 ng/g, which is far below the lowest maximum level of 3 ng/g established by the European Union. In the immunomagnetic isolation method, a 350-times-higher amount of beads was used to trap ochratoxins from sample extracts. Following a wash step, bound ochratoxins were dissociated from the Mabs using a small volume of acidified acetonitrile/water (2/8 v/v) prior to separation plus identification with nano-LC-Q-ToF-MS. In screened suspect naturally contaminated samples, OTA and its non-chlorinated analogue ochratoxin B were successfully identified by full scan accurate mass spectrometry as a proof of concept for identification of unknown but cross-reacting emerging mycotoxins. Due to the miniaturisation and bioaffinity isolation, this concept might be applicable for the use of other and more expensive bioreagents such as transport proteins and receptors for screening and identification of known and unknown (or masked) emerging food contaminants

    New

    No full text
    We report here the discovery of very low amplitude oscillations in the Pleiades star HD 23628. The 14-nights high quality light curve designates HD 23628 as a new member of the Ύ Scuti stars class. Amplitude spectra indicate a multi-periodic pulsation behaviour, and four pulsation frequencies have been detected so far. The frequency distribution suggests the presence of nonradial modes. Pulsation constant values of the four modes are distributed in the range corresponding to fundamental f to p4 radial modes
    corecore