1,088 research outputs found

    The double Ringel-Hall algebra on a hereditary abelian finitary length category

    Full text link
    In this paper, we study the category H(ρ)\mathscr{H}^{(\rho)} of semi-stable coherent sheaves of a fixed slope ρ\rho over a weighted projective curve. This category has nice properties: it is a hereditary abelian finitary length category. We will define the Ringel-Hall algebra of H(ρ)\mathscr{H}^{(\rho)} and relate it to generalized Kac-Moody Lie algebras. Finally we obtain the Kac type theorem to describe the indecomposable objects in this category, i.e. the indecomposable semi-stable sheaves.Comment: 29 page

    Deep levels in a-plane, high Mg-content MgxZn1-xO epitaxial layers grown by molecular beam epitaxy

    Get PDF
    Deep level defects in n-type unintentionally doped a-plane MgxZn1−xO, grown by molecular beam epitaxy on r-plane sapphire were fully characterized using deep level optical spectroscopy (DLOS) and related methods. Four compositions of MgxZn1−xO were examined with x = 0.31, 0.44, 0.52, and 0.56 together with a control ZnO sample. DLOS measurements revealed the presence of five deep levels in each Mg-containing sample, having energy levels of Ec − 1.4 eV, 2.1 eV, 2.6 V, and Ev + 0.3 eV and 0.6 eV. For all Mg compositions, the activation energies of the first three states were constant with respect to the conduction band edge, whereas the latter two revealed constant activation energies with respect to the valence band edge. In contrast to the ternary materials, only three levels, at Ec − 2.1 eV, Ev + 0.3 eV, and 0.6 eV, were observed for the ZnO control sample in this systematically grown series of samples. Substantially higher concentrations of the deep levels at Ev + 0.3 eV and Ec − 2.1 eV were observed in ZnO compared to the Mg alloyed samples. Moreover, there is a general invariance of trap concentration of the Ev + 0.3 eV and 0.6 eV levels on Mg content, while at least and order of magnitude dependency of the Ec − 1.4 eV and Ec − 2.6 eV levels in Mg alloyed samples

    Quantum groups and double quiver algebras

    Full text link
    For a finite dimensional semisimple Lie algebra g{\frak{g}} and a root qq of unity in a field k,k, we associate to these data a double quiver Qˉ.\bar{\cal{Q}}. It is shown that a restricted version of the quantized enveloping algebras Uq(g)U_q(\frak g) is a quotient of the double quiver algebra kQˉ.k\bar{\cal Q}.Comment: 15 page

    Notes on two-parameter quantum groups, (I)

    Full text link
    A simpler definition for a class of two-parameter quantum groups associated to semisimple Lie algebras is given in terms of Euler form. Their positive parts turn out to be 2-cocycle deformations of each other under some conditions. An operator realization of the positive part is given.Comment: 11 page

    Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time

    Full text link
    Thomassen characterized some 1-plane embedding as the forbidden configuration such that a given 1-plane embedding of a graph is drawable in straight-lines if and only if it does not contain the configuration [C. Thomassen, Rectilinear drawings of graphs, J. Graph Theory, 10(3), 335-341, 1988]. In this paper, we characterize some 1-plane embedding as the forbidden configuration such that a given 1-plane embedding of a graph can be re-embedded into a straight-line drawable 1-plane embedding of the same graph if and only if it does not contain the configuration. Re-embedding of a 1-plane embedding preserves the same set of pairs of crossing edges. We give a linear-time algorithm for finding a straight-line drawable 1-plane re-embedding or the forbidden configuration.Comment: Appears in the Proceedings of the 24th International Symposium on Graph Drawing and Network Visualization (GD 2016). This is an extended abstract. For a full version of this paper, see Hong S-H, Nagamochi H.: Re-embedding a 1-Plane Graph into a Straight-line Drawing in Linear Time, Technical Report TR 2016-002, Department of Applied Mathematics and Physics, Kyoto University (2016

    Compact Drawings of 1-Planar Graphs with Right-Angle Crossings and Few Bends

    Full text link
    We study the following classes of beyond-planar graphs: 1-planar, IC-planar, and NIC-planar graphs. These are the graphs that admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A drawing of a graph is 1-planar if every edge is crossed at most once. A 1-planar drawing is IC-planar if no two pairs of crossing edges share a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing edges share two vertices. We study the relations of these beyond-planar graph classes (beyond-planar graphs is a collective term for the primary attempts to generalize the planar graphs) to right-angle crossing (RAC) graphs that admit compact drawings on the grid with few bends. We present four drawing algorithms that preserve the given embeddings. First, we show that every nn-vertex NIC-planar graph admits a NIC-planar RAC drawing with at most one bend per edge on a grid of size O(n)×O(n)O(n) \times O(n). Then, we show that every nn-vertex 1-planar graph admits a 1-planar RAC drawing with at most two bends per edge on a grid of size O(n3)×O(n3)O(n^3) \times O(n^3). Finally, we make two known algorithms embedding-preserving; for drawing 1-planar RAC graphs with at most one bend per edge and for drawing IC-planar RAC graphs straight-line

    Exploring complex networks via topological embedding on surfaces

    Full text link
    We demonstrate that graphs embedded on surfaces are a powerful and practical tool to generate, characterize and simulate networks with a broad range of properties. Remarkably, the study of topologically embedded graphs is non-restrictive because any network can be embedded on a surface with sufficiently high genus. The local properties of the network are affected by the surface genus which, for example, produces significant changes in the degree distribution and in the clustering coefficient. The global properties of the graph are also strongly affected by the surface genus which is constraining the degree of interwoveness, changing the scaling properties from large-world-kind (small genus) to small- and ultra-small-world-kind (large genus). Two elementary moves allow the exploration of all networks embeddable on a given surface and naturally introduce a tool to develop a statistical mechanics description. Within such a framework, we study the properties of topologically-embedded graphs at high and low `temperatures' observing the formation of increasingly regular structures by cooling the system. We show that the cooling dynamics is strongly affected by the surface genus with the manifestation of a glassy-like freezing transitions occurring when the amount of topological disorder is low.Comment: 18 pages, 7 figure

    Stability conditions and Stokes factors

    Full text link
    Let A be the category of modules over a complex, finite-dimensional algebra. We show that the space of stability conditions on A parametrises an isomonodromic family of irregular connections on P^1 with values in the Hall algebra of A. The residues of these connections are given by the holomorphic generating function for counting invariants in A constructed by D. Joyce.Comment: Very minor changes. Final version. To appear in Inventione

    Molecular basis of RNA polymerase III transcription repression by Maf1

    Get PDF
    RNA polymerase III (Pol III) transcribes short RNAs required for cell growth. Under stress conditions, the conserved protein Maf1 rapidly represses Pol III transcription. We report the crystal structure of Maf1 and cryo-electron microscopic structures of Pol III, an active Pol III-DNA-RNA complex, and a repressive Pol III-Maf1 complex. Binding of DNA and RNA causes ordering of the Pol III-specific subcomplex C82/34/31 that is required for transcription initiation. Maf1 binds the Pol III clamp and rearranges C82/34/31 at the rim of the active center cleft. This impairs recruitment of Pol III to a complex of promoter DNA with the initiation factors Brf1 and TBP and thus prevents closed complex formation. Maf1 does however not impair binding of a DNA-RNA scaffold and RNA synthesis. These results explain how Maf1 specifically represses transcription initiation from Pol III promoters and indicate that Maf1 also prevents reinitiation by binding Pol III during transcription elongation
    corecore