19 research outputs found

    Attaching NorA efflux pump inhibitors to methylene blue enhances antimicrobial photodynamic inactivation of Escherichia coli and Acinetobacter baumannii in vitro and in vivo

    Get PDF
    Resistance of bacteria to antibiotics is a public health concern worldwide due to the increasing failure of standard antibiotic therapies. Antimicrobial photodynamic inactivation (aPDI) is a promising non-antibiotic alternative for treating localized bacterial infections that uses non-toxic photosensitizers and harmless visible light to produce reactive oxygen species and kill microbes. Phenothiazinium photosensitizers like methylene blue (MB) and toluidine blue O are hydrophobic cations that are naturally expelled from bacterial cells by multidrug efflux pumps, which reduces their effectiveness. We recently reported the discovery of a NorA efflux pump inhibitor-methylene blue (EPI-MB) hybrid compound INF55-(Ac)en-MB that shows enhanced photodynamic inactivation of the Gram-positive bacterium methicillin-resistant Staphylococcus aureus (MRSA) relative to MB, both in vitro and in vivo. Here, we report the surprising observation that INF55-(Ac)en-MB and two related hybrids bearing the NorA efflux pump inhibitors INF55 and INF271 also show enhanced aPDI activity in vitro (relative to MB) against the Gram-negative bacteria Escherichia coli and Acinetobacter baumannii, despite neither species expressing the NorA pump. Two of the hybrids showed superior effects to MB in murine aPDI infection models. The findings motivate wider exploration of aPDI with EPI-MB hybrids against Gram-negative pathogens and more detailed studies into the molecular mechanisms underpinning their activity

    Clostridium difficile infection: molecular pathogenesis and novel therapeutics

    No full text
    The Gram-positive anaerobic bacterium Clostridium difficile produces toxins A and B, which can cause a spectrum of diseases from pseudomembranous colitis to C. difficile-associated diarrhea. A limited number of C. difficile strains also produce a binary toxin that exhibits ADP ribosyltransferase activity. Here, the structure and the mechanism of action of these toxins as well as their role in disease are reviewed. Nosocomial C. difficile infection is often contracted in hospital when patients treated with antibiotics suffer a disturbance in normal gut microflora. C. difficile spores can persist on dry, inanimate surface for months. Metronidazole and oral vancomycin are clinically used for treatment of C. difficile infection but clinical failure and concern about promotion of resistance are motivating the search for novel non-antibiotic therapeutics. Methods for controlling both toxins and spores, replacing gut microflora by probiotics or fecal transplant, and killing bacteria in the anaerobic gut by photodynamic therapy are discussed

    Cephalosporin nitric oxide-donor prodrug DEA-C3D disperses biofilms formed by clinical cystic fibrosis isolates of Pseudomonas aeruginosa

    Get PDF
    OBJECTIVES: The cephalosporin nitric oxide (NO)-donor prodrug DEA-C3D (\u27DiEthylAmin-Cephalosporin-3\u27-Diazeniumdiolate\u27) has been shown to initiate the dispersal of biofilms formed by the Pseudomonas aeruginosa laboratory strain PAO1. In this study, we investigated whether DEA-C3D disperses biofilms formed by clinical cystic fibrosis (CF) isolates of P. aeruginosa and its effect in combination with two antipseudomonal antibiotics, tobramycin and colistin, in vitro. METHODS: β-Lactamase-triggered release of NO from DEA-C3D was confirmed using a gas-phase chemiluminescence detector. MICs for P. aeruginosa clinical isolates were determined using the broth microdilution method. A crystal violet staining technique and confocal laser scanning microscopy were used to evaluate the effects of DEA-C3D on P. aeruginosa biofilms alone and in combination with tobramycin and colistin. RESULTS: DEA-C3D was confirmed to selectively release NO in response to contact with bacterial β-lactamase. Despite lacking direct, cephalosporin/β-lactam-based antibacterial activity, DEA-C3D was able to disperse biofilms formed by three P. aeruginosa clinical isolates. Confocal microscopy revealed that DEA-C3D in combination with tobramycin produces similar reductions in biofilm to DEA-C3D alone, whereas the combination with colistin causes near complete eradication of P. aeruginosa biofilms in vitro. CONCLUSIONS: DEA-C3D is effective in dispersing biofilms formed by multiple clinical isolates of P. aeruginosa and could hold promise as a new adjunctive therapy to patients with CF

    Harnessing the power of light to treat staphylococcal infections focusing on MRSA

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) has become the most important drug-resistant microbial pathogen in countries throughout the world. Morbidity and mortality due to MRSA infections continue to increase despite efforts to improve infection control measures and to develop new antibiotics. Therefore alternative antimicrobial strategies that do not give rise to development of resistance are urgently required. A group of therapeutic interventions has been developed in the field of photomedicine with the common theme that they rely on electromagnetic radiation with wavelengths between 200 and 1000 nm broadly called light . These techniques all use simple absorption of photons by specific chromophores to deliver the killing blow to microbial cells while leaving the surrounding host mammalian cells relatively unharmed. Photodynamic inactivation uses dyes called photosensitizers (PS) that bind specifically to MRSA cells and not host cells, and generate reactive oxygen species including singlet oxygen and singlet oxygen upon illumination. Sophisticated molecular strategies to target the PS to MRSA cells have been designed. Ultraviolet C radiation can damage microbial DNA without unduly harming host DNA. Blue light can excite endogenous porphyrins and flavins in MRSA cells that are not present in host cells. Near-infrared lasers can interfere with microbial membrane potentials without raising the temperature of the tissue. Taken together these innovative approaches towards harnessing the power of light suggest that the ongoing threat of MRSA may eventually be defeated

    Thiocyanate potentiates antimicrobial photodynamic therapy: in situ generation of the sulfur trioxide radical anion by singlet oxygen

    No full text
    Antimicrobial photodynamic therapy (PDT) is used for the eradication of pathogenic microbial cells and involves the light excitation of dyes in the presence of O2, yielding reactive oxygen species including the hydroxyl radical (OH) and singlet oxygen (1O2). In order to chemically enhance PDT by the formation of longer-lived radical species, we asked whether thiocyanate (SCN−) could potentiate the methylene blue (MB) and light-mediated killing of the gram-positive Staphylococcus aureus and the gram-negative Escherichia coli. SCN− enhanced PDT (10 µM MB, 5 J/cm2 660 nm hv) killing in a concentration-dependent manner of S. aureus by 2.5 log10 to a maximum of 4.2 log10 at 10 mM (P\u3c0.001) and increased killing of E. coli by 3.6 log10 to a maximum of 5.0 log10 at 10 mM (P\u3c0.01). We determined that SCN− rapidly depleted O2 from an irradiated MB system, reacting exclusively with 1O2, without quenching the MB excited triplet state. SCN− reacted with 1O2, producing a sulfur trioxide radical anion (a sulfur-centered radical demonstrated by EPR spin trapping). We found that MB-PDT of SCN− in solution produced both sulfite and cyanide anions, and that addition of each of these salts separately enhanced MB-PDT killing of bacteria. We were unable to detect EPR signals of OH, which, together with kinetic data, strongly suggests that MB, known to produce OH and 1O2, may, under the conditions used, preferentially form 1O2

    Discovery of Cephalosporin-3\u27-Diazeniumdiolates That Show Dual Antibacterial and Antibiofilm Effects against Pseudomonas aeruginosa Clinical Cystic Fibrosis Isolates and Efficacy in a Murine Respiratory Infection Model

    Get PDF
    The formation of biofilms provides a formidable defense for many bacteria against antibiotics and host immune responses. As a consequence, biofilms are thought to be the root cause of most chronic infections, including those occurring on medical indwelling devices, endocarditis, urinary tract infections, diabetic and burn wounds, and bone and joint infections. In cystic fibrosis (CF), chronic Pseudomonas aeruginosa (P. aeruginosa) respiratory infections are the leading cause of morbidity and mortality in adults. Previous studies have shown that many bacteria can undergo a coordinated dispersal event in the presence of low concentrations of nitric oxide (NO), suggesting that NO could be used to initiate biofilm dispersal in chronic infections, enabling clearance of the more vulnerable planktonic cells. In this study, we describe efforts to create all-in-one cephalosporin-based NO donor prodrugs (cephalosporin-3\u27-diazeniumdiolates, C3Ds) that show both direct β-lactam mediated antibacterial activity and antibiofilm effects. Twelve novel C3Ds were synthesized and screened against a panel of P. aeruginosa CF clinical isolates and other human pathogens. The most active compound, AMINOPIP2 ((Z)-1-(4-(2-aminoethyl)piperidin-1-yl)-2-(((6R,7R)-7-((Z)-2-(2-aminothiazol-4-yl)-2-(((2-carboxypropan-2-yl)oxy)imino)acetamido)-2-carboxy-8-oxo-5-thia-1-azabicyclo[4.2.0]oct-2-en-3-yl)methoxy)diazene 1-oxide)-ceftazidime 12, showed higher antibacterial potency than its parent cephalosporin and front-line antipseudomonal antibiotic ceftazidime, good stability against β-lactamases, activity against ceftazidime-resistant P. aeruginosa in vitro biofilms, and efficacy equivalent to ceftazidime in a murine P. aeruginosa respiratory infection model. The results support further evaluation of AMINOPIP2-ceftazidime 12 for P. aeruginosa lung infections in CF and a broader study of all-in-one C3Ds for other chronic infections
    corecore