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Attaching NorA efflux pump inhibitors to methylene blue enhances
antimicrobial photodynamic inactivation of Escherichia coli and
Acinetobacter baumannii in vitro and in vivo

Abstract
Resistance of bacteria to antibiotics is a public health concern worldwide due to the increasing failure of
standard antibiotic therapies. Antimicrobial photodynamic inactivation (aPDI) is a promising non-antibiotic
alternative for treating localized bacterial infections that uses non-toxic photosensitizers and harmless visible
light to produce reactive oxygen species and kill microbes. Phenothiazinium photosensitizers like methylene
blue (MB) and toluidine blue O are hydrophobic cations that are naturally expelled from bacterial cells by
multidrug efflux pumps, which reduces their effectiveness. We recently reported the discovery of a NorA
efflux pump inhibitor-methylene blue (EPI-MB) hybrid compound INF55-(Ac)en-MB that shows enhanced
photodynamic inactivation of the Gram-positive bacterium methicillin-resistant Staphylococcus aureus
(MRSA) relative to MB, both in vitro and in vivo. Here, we report the surprising observation that
INF55-(Ac)en-MB and two related hybrids bearing the NorA efflux pump inhibitors INF55 and INF271 also
show enhanced aPDI activity in vitro (relative to MB) against the Gram-negative bacteria Escherichia coli and
Acinetobacter baumannii, despite neither species expressing the NorA pump. Two of the hybrids showed
superior effects to MB in murine aPDI infection models. The findings motivate wider exploration of aPDI
with EPI-MB hybrids against Gram-negative pathogens and more detailed studies into the molecular
mechanisms underpinning their activity.
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Abstract 

Resistance of bacteria to antibiotics is a public health concern worldwide due to the 

increasing failure of standard antibiotic therapies. Antimicrobial photodynamic inactivation 

(aPDI) is a promising non-antibiotic alternative for treating localized bacterial infections that 

uses non-toxic photosensitizers and harmless visible light to produce reactive oxygen species 

and kill microbes. Phenothiazinium photosensitizers like methylene blue (MB) and toluidine 

blue O are hydrophobic cations that are naturally expelled from bacterial cells by multidrug 

efflux pumps, which reduces their effectiveness. We recently reported the discovery of a 

NorA efflux pump inhibitor-methylene blue (EPI-MB) hybrid compound INF55-(Ac)en−MB 

that shows enhanced photodynamic inactivation of the Gram-positive bacterium methicillin-

resistant Staphylococcus aureus (MRSA) relative to MB, both in vitro and in vivo. Here, we 

report the surprising observation that INF55-(Ac)en−MB and two related hybrids bearing the 

NorA efflux pump inhibitors INF55 and INF271 also show enhanced aPDI activity in vitro 

(relative to MB) against the Gram-negative bacteria Escherichia coli and Acinetobacter 

baumannii, despite neither species expressing the NorA pump. Two of the hybrids showed 

superior effects to MB in murine aPDI infection models. The findings motivate wider 

exploration of aPDI with EPI-MB hybrids against Gram-negative pathogens and more 

detailed studies into the molecular mechanisms underpinning their activity. 

 

 

 

 

 

 



Antibiotic resistance has emerged as a significant threat to global public health,
1-3

 

with the diminishing treatment options for several infections leading to commentary that we 

are approaching the end of the ‘golden-age’ of antibiotics.
4-6

 Resistance in the Gram-positive 

bacteria methicillin resistant Staphylococcus aureus (MRSA) is extensive in US hospitals and 

healthcare facilities,
7
 where it accounts for more than 60% of S. aureus isolates and kills 

23,000 patients each year.
8
 

Drug resistant Gram-negative bacteria like Escherichia coli and Acinetobacter 

baumannii are increasingly causing life-threatening infections in hospitals,
6, 9, 10

 with an 

estimated 12% of critical infections caused by E. coli alone.
11

 Data from the Centres for 

Disease Control and Prevention (CDC) shows that Acinetobacter baumanii causes 2% of all 

nosocomial infections and 7% of infections in critically ill patients on mechanical 

ventilators.
12

 It has been estimated that 63% of the 12,000 annual Acinetobacter infections 

are multidrug resistant and cause 500 deaths annually. 

 

 



Figure 1. Structures of phenothiazinium photosensitisers methylene blue (MB) and toluidine 

blue O (TBO) and efflux pump inhibitor-MB hybrids 1-3. Structures of the NorA efflux 

pump inhibitors INF55 and INF271
13

 are also shown.  

 

Antimicrobial photodynamic inactivation (aPDI) is an emerging non-antibiotic 

alternative for treating localized infections and countering microbial resistance.
14, 15

 In this 

approach, photosensitizing dyes (PS) like methylene blue (MB) and toluidine blue O (TBO) 

(Figure 1) are illuminated with red light to produce reactive oxygen species (ROS) (e.g. 

singlet oxygen, 
1
O2 and hydroxyl radicals, •OH) that kill microbes.

16, 17
 The approach is used 

routinely in dentistry
18, 19

 and in some dermatological treatments.
20, 21

 

Over the past ten years the powerful killing effect of aPDI has been demonstrated 

against a wide variety of Gram-positive and Gram-negative bacteria,
22, 23

 with MRSA being 

the focus of several studies.
24-26

 One of the limitations when using phenothiazinium salts in 

aPDI is that as hydrophobic cations, these photosensitizers are natural substrates for bacterial 

multi-drug efflux pumps, which serve to rapidly expel the compounds from cells and reduce 

aPDI effectiveness,
27

 presumably by lowering the concentration of intracellular ROS. It was 

shown that aPDI with phenothiazinium salts can be enhanced in S. aureus when used in 

combination with NorA efflux pump inhibitors (EPI).
28

 Based on these observations, we 

postulated that covalently linking NorA inhibitors to a phenothiazinium PS to form a single 

EPI-MB hybrid compound might have similar effects, and we recently prepared sixteen such 

hybrids and reported their aPDI activities against S. aureus.
29

 Two of the hybrids 

incorporating the NorA EPI INF55 (1 and 2) and one containing the NorA EPI INF271 3 

showed the highest in vitro aPDI of MRSA in vitro. The most potent hybrid 2 (denoted 

INF55-(Ac)en−MB) showed enhanced aPDI activity and wound healing effects (relative to 

MB) in a murine MRSA wound infection model. In the current study, we examined the in 



vitro and in vivo aPDI activities of EPI-MB hybrids 1-3 against two representative Gram-

negative bacteria, E. coli and A. baumannii. 

 

In vitro aPDI 

E. coli wild-type (K-12) cells and an isogenic TolC efflux pump knock-out strain  

JW5503-1 (TolC-) were incubated with MB and hybrids 1-3 over the concentration range 1-

20 µM and illuminated with red light (652 nm) at 6 J/cm
2
. CFUs were counted from serially 

diluted aliquots and the results plotted as survival fractions verses compound concentration 

(Figure 2). MB and the hybrids showed no killing effect against either strain in the dark 

(Supplementary Data Figure S1 and S2). For the wild-type strain, illumination in the presence 

of MB produced a 2log10 kill at 10 µM, which increased to 2.5log10 at 20 µM. MB showed 

similar killing at 10 µM against the TolC mutant strain with  higher killing (3.5 log10) at 20 

µM. The increased susceptibility of the TolC- mutant was consistent with MB serving as a 

TolC efflux substrate.
30

 Hybrid 1 produced a 2log10 kill against the wild-type strain at 10 µM 

and a 4log10 kill at 20 µM. Against the TolC- strain, hybrid 1 produced a 2log10 kill at 10 µM 

that increased to 7log10 at 20 µM. For hybrid 2, a 4log10 kill was observed against the wild-

type strain at 10 µM, which increased to 6log10 at 20 µM. Exceptional potency was seen with 

2 against the TolC- strain, where a 6log10 kill was observed at 10 µM and almost complete 

eradication was achieved at 20 µM. Hybrid 3 produced a 3log10 kill at the highest 

concentration (20 µM) against the wild-type strain and 4.5log10 against the TolC- mutant. The 

increased activity of all three hybrids against the TolC- strain relative to the wild-type 

suggests they may be substrates for this pump.  

  



 

Figure 2. aPDI of E. coli wild-type (WT, K-12) and TolC knockout (TolC-, JW5503-1) 

strains using: (a) MB, (b) 1, (c) 2 and (d) 3. Cells were illuminated with 100 mW/cm
2 

red 

light (652 nm, 6 J/cm
2
) and survival fractions determined. Data represent the mean ± SEM 

from three independent experiments. 

 

aPDI of A. baumannii was examined in vitro using the wild-type strain AB007. MB 

and the three hybrids showed no killing of AB007 in the dark over the concentration range 1-



20 µM (Figure 3). Following illumination, hybrids 2 and 3 showed similar aPDI potency to 

MB at 20 µM (~4log10 kill), with hybrid 1 producing an extra log10 kill at this concentration. 

   

 

Figure 3. aPDI of Acinetobacter baumannii AB007 (and dark controls) using: (a) MB, (b) 1, 

(c) 2 and (d) 3 over the concentration range 1-20 µM against. Data represent the mean ± SEM 

from three independent experiments. 

 

 



In vivo aPDI of E. coli with hybrid 2 

Having shown the highest aPDI potency against the two E. coli strains in vitro, hybrid 

2 was evaluated alongside MB for in vivo aPDI efficacy using a mouse full-thickness third-

degree burn E. coli infection model.
31

 A pathogenic variant of bioluminescent 

enteropathogenic E. coli (EPEC, WS2572) was inoculated into burns on the shaved dorsal 

surfaces of mice and the infected areas were treated with solutions containing MB or hybrid 

2. The areas were illuminated with 652 nm red light and luminescence images captured. The 

normalized luminescence emanating from wounds (relative luminescence units, RLU) during 

the ‘light treatment’ phase of the experiment was plotted as a function of applied light fluence 

(Figure 4(a)). 

The light only control cohort (Group A) showed a slight (~10%) reduction in 

luminescence following application of the highest fluence (120 J/cm
2
). Application of MB in 

the absence of light (Group B) produced a ~25% reduction in luminescence at the same 

fluence, while aPDI with MB (Group C) resulted in a ~90% reduction in luminescence. In the 

absence of light, hybrid 2 (Group D) showed a slightly higher killing than MB (~40% 

reduction in luminescence), while aPDI with hybrid 2 (Group E) produced a remarkable 

~80% reduction in bacterial luminescence at low fluence (36 J/cm
2
) and total loss of the 

luminescence signal at 84 J/cm
2
. 

Post-treatment monitoring of infection sites by capturing daily bioluminescence 

images for 14 days (Figure 4(b)) revealed a slight rebound in bacterial load for the controls 

(Group A) and MB treated groups (Groups B and C) 1 day after infection/treatment. 

Infections in the control groups A, B and D were all resolved (i.e. no luminescence detected) 

within 13-14 days, while for the MB aPDI cohort (Group C) infections were resolved after 12 

days. aPDI with hybrid 2 (Group E) produced a lower bacterial burden compared to all other 



groups throughout the entire monitoring period and the infections were resolved more rapidly 

(10 days). 

 

 

Figure 4. (a) Bioluminescence of E. coli-infected mouse burn wounds during initial ‘light-

treatment’ phase of experiment: Group A - light controls (no compound), Group B - MB dark 

control, Group C - MB with aPDI, Group D - hybrid 2 dark control and Group E - hybrid 2 

with aPDI. MB or hybrid (40 µL of 250 µM stock solution) was applied to infection sites. 

Data represent the mean (± SEM) normalized relative luminescence units (RLU) emanating 

from the burn wounds of 4-6 mice in each group during application of 0, 12, 36, 84, 108 and 

120 J/cm
2
 red light (652 nm). (b) Fourteen day post-treatment monitoring of burn wound 

infection site luminescence.  

 

 

 



In vivo aPDI of A. baumannii with hybrid 1 

Hybrid 1 was tested for in vivo aPDI efficacy alongside MB using a mouse needle 

back-scratch wound abrasion A. baumannii infection model.
32

 Bioluminescent A. baumannii 

(strain AB Iraqi 007) was inoculated into needle-scratch wounds on the shaved dorsal 

surfaces of mice and the infected areas were treated with solutions containing MB or hybrid 

1. Control and aPDI treatment groups (Groups A-E) and infection site monitoring were as for 

the E. coli burn model. 

The light only controls (Group A) showed no reduction in the luminescence signal 

over the 20 min ‘light-treatment’ phase of the experiment, confirming that the A. baumannii 

infection was stable over this period (Figure 5(a)). The MB (Group B) and hybrid 1 (Group 

D) dark controls produced slight reductions (<25%) in luminescence during this period. A 

50% reduction in the luminescence signal was seen following aPDI with MB (Group C) at 36 

J/ cm
2
 and total loss of the signal occurred at 108 J/cm

2
. aPDI with hybrid 1 (Group E) 

showed an impressive 95% reduction in luminescence at low fluence (36 J/cm
2
) and complete 

loss of the signal at 84 J/cm
2
. 

A rebound in bacterial load (50% or greater) was observed 1 day after 

infection/treatment in all cohorts except Group E (aPDI with 1) (Figure 5(b)). Low level 

luminescence remained in control Group A at Day 14, while the signal disappeared after 12 

days in the presence of MB in the dark (Group B). aPDI with MB (Group C) produced 

slightly lower bacterial loads throughout the monitoring period and the luminescence signal 

had disappeared after 10 days. Treatment with hybrid 1 in the dark (Group D) reduced the 

bacterial load at a rate that paralleled the MB dark control, with infections resolving within 

12 days. aPDI with 1 (Group E) showed lower bacterial loads than all other cohorts 

throughout the entire monitoring period and the infections were resolved within 6 days. 



Bioluminescence images captured from representative animals in Groups A-E during the first 

6 days of the monitoring period are provided in the Supplementary Data (Figure S3). 

 

 

 

Figure 5. (a) Bioluminescence of A. baumannii-infected mouse back scratch abrasion 

wounds during initial ‘light-treatment’ phase of experiment: Group A - light control (no 

compound), Group B - MB dark control, Group C - MB with aPDI, Group D - hybrid 1 dark 

control and Group E - hybrid 1 with aPDI. MB or hybrid (40 µL of a 250 µM stock solution) 

was applied to infection sites. Data represent the mean (± SEM) normalized relative 

luminescence units (RLU) emanating from the scratch wounds of 4-6 mice in each group 

after application of 0, 12, 36, 84, 108 and 120 J/cm
2
 red light (652 nm). (b) Fourteen day 

post-treatment monitoring of wound infection site luminescence. 



Previous work by Tegos et al. showed that phenothiazinium-based photosensitizers 

such as MB are substrates for bacterial MDR efflux pumps and that these pumps can expel 

photosensitizers from cells leading to reduced aPDI effectiveness.
27

 They also showed that 

aPDI with MB against the Gram-positive bacterium S. aureus is enhanced by the co-presence 

of inhibitors of the major facilitator efflux pump NorA.
27

 We recently reported that synthetic 

hybrids formed by covalently attaching NorA pump inhibitors to MB also enhance aPDI of S. 

aureus,
29

 with three leading hybrids 1-3 showing significant ROS generation upon 

illumination, potent aPDI of S. aureus in vitro and higher intracellular accumulation in S. 

aureus cells than MB. When hybrid 2 (INF55-(Ac)en−MB) was advanced to in vivo aPDI 

studies it outperformed MB by all measures in a murine back-scratch S. aureus infection 

model. 

 Buoyed by these findings, we chose to study the aPDI effects of 1-3 against two 

representative Gram-negative bacteria, i.e. E. coli and A. baumannii, despite neither having 

previously been shown to express membrane efflux pumps that are inhibited by INF55 or 

INF271. Indeed these two EPIs to date have only been shown to inhibit the NorA pump in S. 

aureus.
33

 Nevertheless, Gram-negative bacteria are known to be less susceptible to 

extracellular singlet oxygen than Gram-positive species,
34,35

 suggesting that a hybrid 

approach that could increase intracellular ROS was worth investigating. 

The major efflux pump in E. coli comprises the outer membrane channel protein TolC and 

two other proteins AcrA and AcrB, which  together form the tripartite efflux system AcrAB-

TolC; a member of the resistance nodulation division (RND) superfamily.
36

 Several reports 

have shown that phenothiazinium salts are efflux substrates in E. coli.
27,37,38

 When tested 

against E. coli wild-type cells and a TolC knockout mutant, all three hybrids showed greater 

aPDI than MB against both strains. When the most potent hybrid 2 was evaluated for aPDI 

efficacy in a murine E. coli burn infection model it showed greater aPDI than MB during the 



‘light-treatment’ phase of the experiment, lower bacterial counts throughout the post-

treatment monitoring period and more rapid resolution of the infection. These results suggest 

that hybrid 2 is either a poorer substrate for E. coli pumps than MB or it acts directly as a 

pump inhibitor, both of which would lead to higher intracellular concentrations of the hybrid 

and higher intracellular ROS during aPDI.  Further experiments are ultimately required, 

however, to confirm which (if any) E. coli pumps are targeted by 2, how they are affected and 

whether these effects play a dominant role in the enhanced E. coli aPDI seen with 2. 

The most prevalent pumps in A. baumannii are members of the RND superfamily and 

include the AdeABC two-component regulatory system AdeIJK and AdeFGH. Non-RND 

efflux systems have also been characterised in A. baumannii.
39

 When tested in vitro for aPDI 

of A. baumannii AB007, hybrids 2 and 3 showed no increase in activity relative to MB. 

However, hybrid 1 showed 1log10 greater killing than MB at the highest concentration (20 

µM) and was subsequently found to outperform MB in a murine aPDI A. baumannii infection 

model. These results are consistent with 1 (but not 2 or 3) being a poorer efflux substrate than 

MB in A. baumannii and possibly a pump inhibitor, although alternative explanations are 

plausible. For example, the physicochemical properties of 1 may engender higher affinity for 

A. baumannii cell surface components relative to MB and 2/3, leading to higher cell-localized 

concentrations of ROS during aPDI and greater lethality. The relationship between higher 

cell surface affinity of photosensitizers and increased aPDI has been noted.
40 

In conclusion, this study demonstrates that attaching NorA EPIs to MB can increase 

aPDI effectiveness against the Gram-negative pathogens E. coli and A. baumannii in vitro 

and in vivo. Further experiments to establish whether INF55, INF271 and the hybrids are 

inhibitors of efflux pumps in Gram-negative bacteria will shed light on the underlying 

mechanisms responsible for the observed increases in aPDI efficacy relative to MB. Hybrids 



containing MB attached to known inhibitors of Gram-negative efflux pumps (e.g. Phenyl-

arginine-beta-naphthylamide, PaβN)
41

 would be of interest in future studies. 
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(1) Microbial strains and culture conditions. E. coli K-12 was used as the wild type strain. 

E. coli JW5503-1 from Dr. Michael LaFleur’s laboratory (Northeastern University) was used 

as the TolC knock out mutant (TolC-). The bioluminescent enteropathogenic E. coli (EPEC) 

strain WS2572 (Xenogen, Inc., now called Caliper Life Sciences Inc., Hopkinton, MA) was 

used for in vivo studies. Acinetobacter baumannii AB007 was used for in vitro studies and A. 

baumannii bioluminescence AB Iraqi 007 strain was used for in vivo studies. A list of these 

strains and strain identifiers is provided in Table S1. All cells were cultured under standard 

conditions in brain heart infusion (BHI) media (Fisher Scientific, Braintree, MA, USA) with 

aeration at 37 °C. Cells were used at 10
7
-10

8
 CFU per mL (mid-log growth phase) in all 

experiments. 

 

(2) Photosensitizers and light sources. Hybrids 1-3 were synthesised as described 

previously.
1
 Stock solutions of MB and hybrids were prepared as Cremophor EL (CrEL, 

Sigma Aldrich) micellar suspensions diluted in phosphate-buffered saline (PBS) to a final 

concentration of 200 µM. Solutions were stored for a maximum of 2 weeks at 4 °C in the 

dark.
1
 The light source for illumination was a non-coherent lamp with a 30 nm-band-pass 

filter 652 ± 15 nm (LC122; LumaCare, London, UK). Total power output from the fibre 

bundle was 300 mW, with 96-well plates positioned at a height such that 100 mW/cm
2
 

irradiance was applied.   

 

(3) In vitro PDI studies. Bacterial strains (10
7
 CFU) were incubated with MB or hybrids at 

room temperature in 96-well plates at concentrations between 0-20 µM for 30 min before 

being illuminated with 652 nm light at an energy density of 6 J/cm
2
. Cell suspensions were 

centrifuged at 12,000 rpm and then washed twice with sterile PBS. Aliquots were streaked 

onto square BHI agar plates after 10-fold serial dilution in PBS (to provide 10
-1

-10
-6
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dilutions) and then incubated overnight at 37 °C. Colony forming units (CFU) were counted 

and survival fractions determined, as described by Jett et al.
2
 The same procedures were used 

for dark controls without application of light. 

 

(4) Mouse full-thickness burn infection model.
3
 Animal procedures were approved by the 

Subcommittee on Research Animal Care (IACUC) at Massachusetts General Hospital 

(MGH) and performed according to the guidelines of the National Institutes of Health (NIH). 

Adult female BALB/c mice (aged 6-8 weeks; 17-21 g) were purchased from Charles River 

Laboratories, (Wilmington, MA). Each animal was housed separately (i.e. one per cage) and 

maintained on a 12 h light/12 h dark cycle with access to food and water ad libitum. A mouse 

full-thickness burn model was used for studies with E. coli. Mice were anesthetized using a 

ketamine-xylazine cocktail injected intraperitoneally (i.p.) and the dorsal surface was shaved. 

Two preheated (95 °C) brass blocks (Small Parts Inc., Miami, FL) were held for 10 s against 

the opposing sides of an elevated skin fold on the dorsal surface to create a non-lethal, full-

thickness third-degree burn.
4
 To relieve pain, each mouse received buprenorphine (0.03 

mg/kg subcutaneously twice a day) for 3 days after burn creation. The procedure produced 15 

mm x 10 mm (150 mm
2
) burn areas corresponding to 4% of the total body surface area.

5
 To 

avoid dehydration, mice received i.p. injections of 0.5 mL sterile saline (Phoenix Scientific 

Inc., St. Joseph, MO) immediately after burning. Five minutes later, a 50 µL aliquot of 

bioluminescent E. coli EPEC WS2572 (Xen14) cells in sterile PBS (10
8
 CFU/mL) was 

inoculated onto the burn surface using a pipette tip.
6
 Luminescence images from the burns 

were captured immediately after inoculation and at intervals thereafter (see text). 

 

(5) Mouse needle scratch infection model.
7
 Mice were immunosuppressed with two 

intraperitoneal (i.p.) cyclophosphamide injections, the first administered 4 days prior to 
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inoculation (150 mg/kg i.p.) and the second (100 mg/kg i.p.) one day prior. On the day of 

inoculation (Day 0), mice were anesthetized with i.p. injections of a ketamine (100 

mg/kg)/xylazine (10mg/kg) cocktail and their dorsal surfaces were shaved. A 28-gauge 

needle (Micro-Fine IV, Becton Dickinson, Franklin Lakes, NJ) was used to scratch 6 x 6 

cross-hatch lines 1.5 mm apart in a square covering ~1.0 cm
2
 on the dorsal surfaces to create 

a skin abrasion wound.
7,8 

 The scratches were carefully applied so that only the stratum 

corneum and upper-layer of the epidermis were damaged. Five minutes after wounding a 40 

µL aliquot was drawn from a 10
8
 CFU/mL suspension of A. baumannii in PBS and spread 

evenly over the wound area using a micropipette tip. Bioluminescence images were captured 

immediately after inoculation and at intervals thereafter (see text). 

Thirty minutes after inoculation (both burn and wound models), 40 µL of a 250 µM 

stock solution of MB or hybrid was applied to the infection site and a second 

bioluminescence image was captured. Fifteen minutes after compound addition (to allow 

binding/penetration into cells) a third image was captured (Time = 0). Mice were then 

illuminated with 652 nm light in aliquots over a 20 min period, corresponding to cumulative 

fluences of 12, 36, 84, 108 and 120 J/cm
2
. Bioluminescence images were captured after each 

light dose.  For the absolute control group (Group A - light only) and dark control groups 

(Groups B and D), images were captured at the equivalent times post-inoculation. For post-

treatment monitoring, bioluminescence images were captured daily for two weeks (Days 1-

14).  

 

(6) Bioluminescence imaging. The imaging system consisted of an intensified charge-

coupled-device (ICCD) camera (model C2400-30H; Hamamatsu Photonics, Bridgewater, 

NJ), an imaging box, a camera controller on top of the imaging box, an image processor 

(C5510-50; Hamamatsu) and a colour monitor (PVM1454Q; Hamamatsu). Light-emitting 
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diodes were fitted inside the imaging box to provide light for dimensional imaging. With the 

system in photo-counting mode, images were built at extremely low-light levels by 

identifying and integrating individual photons emitted. To obtain images, mice were 

anesthetized by i.p. ketamine-xylazine cocktail injection and placed on an adjustable stage in 

the specimen chamber such that the infected wounds were located directly under the camera. 

A grayscale background image of each wound was obtained followed by a photon count for 

the same region. Using Argus software, the complete photon count was quantified as relative 

luminescence units (RLUs) and displayed in a false-colour scale ranging from most intense 

(pink) to least intense (blue). 

 

 

Table S1. List of bacterial strains. 

Entry Strain 
Name and 

number 
Use Source/reference 

1 A. baumannii AB007 In vitro and in vivo Ref 9 

2 E. coli EC K-12 in vitro as wild-type 

 

ATCC PTA-

7555/Ref 10 

 

3 E. coli JW5503-1 
in vitro as TolC knock 

out (TolC-) 

Michael La fleur 

NEU (from Keio 

collection) 

4 E. coli 
EPEC WS2572 

(XEN14) 
in vivo 

 

Xenogen Inc 

 

Bioluminescent strains used for in vivo studies are highlighted in yellow. 
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FIG S1. aPDI activity (with dark controls) for: (A) MB (B) 1, (C) 2 and (D) 3 over the 

concentration range 1-20 µM against the E. coli wild-type strain.                                                                                                                      
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FIG S2. aPDI activity (and dark controls) for (A) MB, (B) 1, (C) 2 and (D) 3 over the 

concentration range 1-20 µM against E. coli TolC knock out strain JW5503-1.  
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 Group A Group B Group C Group D Group E 

 

 

Day 1 

    

 

 

Day 2 

    

 

 

Day 3 

    

 

 

Day 4 

    

 

 

Day 5 

    

 

 

Day 6 

    

FIG S3. Bioluminescence images captured from representative animals in Groups A-E in the 

A. baumannii needle scratch model. Post-treatment monitoring showed that complete 

disappearance of luminescence occurred fastest (Day 6) for Group E (aPDI with hybrid 1).  
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