69 research outputs found
Enhancing Biomedical Text Summarization Using Semantic Relation Extraction
Automatic text summarization for a biomedical concept can help researchers to get the key points of a certain topic from large amount of biomedical literature efficiently. In this paper, we present a method for generating text summary for a given biomedical concept, e.g., H1N1 disease, from multiple documents based on semantic relation extraction. Our approach includes three stages: 1) We extract semantic relations in each sentence using the semantic knowledge representation tool SemRep. 2) We develop a relation-level retrieval method to select the relations most relevant to each query concept and visualize them in a graphic representation. 3) For relations in the relevant set, we extract informative sentences that can interpret them from the document collection to generate text summary using an information retrieval based method. Our major focus in this work is to investigate the contribution of semantic relation extraction to the task of biomedical text summarization. The experimental results on summarization for a set of diseases show that the introduction of semantic knowledge improves the performance and our results are better than the MEAD system, a well-known tool for text summarization
Constructing a semantic predication gold standard from the biomedical literature
<p>Abstract</p> <p>Background</p> <p>Semantic relations increasingly underpin biomedical text mining and knowledge discovery applications. The success of such practical applications crucially depends on the quality of extracted relations, which can be assessed against a gold standard reference. Most such references in biomedical text mining focus on narrow subdomains and adopt different semantic representations, rendering them difficult to use for benchmarking independently developed relation extraction systems. In this article, we present a multi-phase gold standard annotation study, in which we annotated 500 sentences randomly selected from MEDLINE abstracts on a wide range of biomedical topics with 1371 semantic predications. The UMLS Metathesaurus served as the main source for conceptual information and the UMLS Semantic Network for relational information. We measured interannotator agreement and analyzed the annotations closely to identify some of the challenges in annotating biomedical text with relations based on an ontology or a terminology.</p> <p>Results</p> <p>We obtain fair to moderate interannotator agreement in the practice phase (0.378-0.475). With improved guidelines and additional semantic equivalence criteria, the agreement increases by 12% (0.415 to 0.536) in the main annotation phase. In addition, we find that agreement increases to 0.688 when the agreement calculation is limited to those predications that are based only on the explicitly provided UMLS concepts and relations.</p> <p>Conclusions</p> <p>While interannotator agreement in the practice phase confirms that conceptual annotation is a challenging task, the increasing agreement in the main annotation phase points out that an acceptable level of agreement can be achieved in multiple iterations, by setting stricter guidelines and establishing semantic equivalence criteria. Mapping text to ontological concepts emerges as the main challenge in conceptual annotation. Annotating predications involving biomolecular entities and processes is particularly challenging. While the resulting gold standard is mainly intended to serve as a test collection for our semantic interpreter, we believe that the lessons learned are applicable generally.</p
Combining classifiers for robust PICO element detection
<p>Abstract</p> <p>Background</p> <p>Formulating a clinical information need in terms of the four atomic parts which are Population/Problem, Intervention, Comparison and Outcome (known as PICO elements) facilitates searching for a precise answer within a large medical citation database. However, using PICO defined items in the information retrieval process requires a search engine to be able to detect and index PICO elements in the collection in order for the system to retrieve relevant documents.</p> <p>Methods</p> <p>In this study, we tested multiple supervised classification algorithms and their combinations for detecting PICO elements within medical abstracts. Using the structural descriptors that are embedded in some medical abstracts, we have automatically gathered large training/testing data sets for each PICO element.</p> <p>Results</p> <p>Combining multiple classifiers using a weighted linear combination of their prediction scores achieves promising results with an <it>f</it>-measure score of 86.3% for P, 67% for I and 56.6% for O.</p> <p>Conclusions</p> <p>Our experiments on the identification of PICO elements showed that the task is very challenging. Nevertheless, the performance achieved by our identification method is competitive with previously published results and shows that this task can be achieved with a high accuracy for the P element but lower ones for I and O elements.</p
Clustering cliques for graph-based summarization of the biomedical research literature
BACKGROUND: Graph-based notions are increasingly used in biomedical data mining and knowledge discovery tasks. In this paper, we present a clique-clustering method to automatically summarize graphs of semantic predications produced from PubMed citations (titles and abstracts). RESULTS: SemRep is used to extract semantic predications from the citations returned by a PubMed search. Cliques were identified from frequently occurring predications with highly connected arguments filtered by degree centrality. Themes contained in the summary were identified with a hierarchical clustering algorithm based on common arguments shared among cliques. The validity of the clusters in the summaries produced was compared to the Silhouette-generated baseline for cohesion, separation and overall validity. The theme labels were also compared to a reference standard produced with major MeSH headings. CONCLUSIONS: For 11 topics in the testing data set, the overall validity of clusters from the system summary was 10% better than the baseline (43% versus 33%). While compared to the reference standard from MeSH headings, the results for recall, precision and F-score were 0.64, 0.65, and 0.65 respectively
Mining clinical relationships from patient narratives
Background
The Clinical E-Science Framework (CLEF) project has built a system to extract clinically significant information from the textual component of medical records in order to support clinical research, evidence-based healthcare and genotype-meets-phenotype informatics. One part of this system is the identification of relationships between clinically important entities in the text. Typical approaches to relationship extraction in this domain have used full parses, domain-specific grammars, and large knowledge bases encoding domain knowledge. In other areas of biomedical NLP, statistical machine learning (ML) approaches are now routinely applied to relationship extraction. We report on the novel application of these statistical techniques to the extraction of clinical relationships.
Results
We have designed and implemented an ML-based system for relation extraction, using support vector machines, and trained and tested it on a corpus of oncology narratives hand-annotated with clinically important relationships. Over a class of seven relation types, the system achieves an average F1 score of 72%, only slightly behind an indicative measure of human inter annotator agreement on the same task. We investigate the effectiveness of different features for this task, how extraction performance varies between inter- and intra-sentential relationships, and examine the amount of training data needed to learn various relationships.
Conclusion
We have shown that it is possible to extract important clinical relationships from text, using supervised statistical ML techniques, at levels of accuracy approaching those of human annotators. Given the importance of relation extraction as an enabling technology for text mining and given also the ready adaptability of systems based on our supervised learning approach to other clinical relationship extraction tasks, this result has significance for clinical text mining more generally, though further work to confirm our encouraging results should be carried out on a larger sample of narratives and relationship types
HypertenGene: extracting key hypertension genes from biomedical literature with position and automatically-generated template features
<p>Abstract</p> <p>Background</p> <p>The genetic factors leading to hypertension have been extensively studied, and large numbers of research papers have been published on the subject. One of hypertension researchers' primary research tasks is to locate key hypertension-related genes in abstracts. However, gathering such information with existing tools is not easy: (1) Searching for articles often returns far too many hits to browse through. (2) The search results do not highlight the hypertension-related genes discovered in the abstract. (3) Even though some text mining services mark up gene names in the abstract, the key genes investigated in a paper are still not distinguished from other genes. To facilitate the information gathering process for hypertension researchers, one solution would be to extract the key hypertension-related genes in each abstract. Three major tasks are involved in the construction of this system: (1) gene and hypertension named entity recognition, (2) section categorization, and (3) gene-hypertension relation extraction.</p> <p>Results</p> <p>We first compare the retrieval performance achieved by individually adding template features and position features to the baseline system. Then, the combination of both is examined. We found that using position features can almost double the original AUC score (0.8140vs.0.4936) of the baseline system. However, adding template features only results in marginal improvement (0.0197). Including both improves AUC to 0.8184, indicating that these two sets of features are complementary, and do not have overlapping effects. We then examine the performance in a different domain--diabetes, and the result shows a satisfactory AUC of 0.83.</p> <p>Conclusion</p> <p>Our approach successfully exploits template features to recognize true hypertension-related gene mentions and position features to distinguish key genes from other related genes. Templates are automatically generated and checked by biologists to minimize labor costs. Our approach integrates the advantages of machine learning models and pattern matching. To the best of our knowledge, this the first systematic study of extracting hypertension-related genes and the first attempt to create a hypertension-gene relation corpus based on the GAD database. Furthermore, our paper proposes and tests novel features for extracting key hypertension genes, such as relative position, section, and template features, which could also be applied to key-gene extraction for other diseases.</p
Dynamic summarization of bibliographic-based data
<p>Abstract</p> <p>Background</p> <p>Traditional information retrieval techniques typically return excessive output when directed at large bibliographic databases. Natural Language Processing applications strive to extract salient content from the excessive data. Semantic MEDLINE, a National Library of Medicine (NLM) natural language processing application, highlights relevant information in PubMed data. However, Semantic MEDLINE implements manually coded schemas, accommodating few information needs. Currently, there are only five such schemas, while many more would be needed to realistically accommodate all potential users. The aim of this project was to develop and evaluate a statistical algorithm that automatically identifies relevant bibliographic data; the new algorithm could be incorporated into a dynamic schema to accommodate various information needs in Semantic MEDLINE, and eliminate the need for multiple schemas.</p> <p>Methods</p> <p>We developed a flexible algorithm named Combo that combines three statistical metrics, the Kullback-Leibler Divergence (KLD), Riloff's RlogF metric (RlogF), and a new metric called PredScal, to automatically identify salient data in bibliographic text. We downloaded citations from a PubMed search query addressing the genetic etiology of bladder cancer. The citations were processed with SemRep, an NLM rule-based application that produces semantic predications. SemRep output was processed by Combo, in addition to the standard Semantic MEDLINE genetics schema and independently by the two individual KLD and RlogF metrics. We evaluated each summarization method using an existing reference standard within the task-based context of genetic database curation.</p> <p>Results</p> <p>Combo asserted 74 genetic entities implicated in bladder cancer development, whereas the traditional schema asserted 10 genetic entities; the KLD and RlogF metrics individually asserted 77 and 69 genetic entities, respectively. Combo achieved 61% recall and 81% precision, with an F-score of 0.69. The traditional schema achieved 23% recall and 100% precision, with an F-score of 0.37. The KLD metric achieved 61% recall, 70% precision, with an F-score of 0.65. The RlogF metric achieved 61% recall, 72% precision, with an F-score of 0.66.</p> <p>Conclusions</p> <p>Semantic MEDLINE summarization using the new Combo algorithm outperformed a conventional summarization schema in a genetic database curation task. It potentially could streamline information acquisition for other needs without having to hand-build multiple saliency schemas.</p
A graph-search framework for associating gene identifiers with documents
BACKGROUND: One step in the model organism database curation process is to find, for each article, the identifier of every gene discussed in the article. We consider a relaxation of this problem suitable for semi-automated systems, in which each article is associated with a ranked list of possible gene identifiers, and experimentally compare methods for solving this geneId ranking problem. In addition to baseline approaches based on combining named entity recognition (NER) systems with a "soft dictionary" of gene synonyms, we evaluate a graph-based method which combines the outputs of multiple NER systems, as well as other sources of information, and a learning method for reranking the output of the graph-based method. RESULTS: We show that named entity recognition (NER) systems with similar F-measure performance can have significantly different performance when used with a soft dictionary for geneId-ranking. The graph-based approach can outperform any of its component NER systems, even without learning, and learning can further improve the performance of the graph-based ranking approach. CONCLUSION: The utility of a named entity recognition (NER) system for geneId-finding may not be accurately predicted by its entity-level F1 performance, the most common performance measure. GeneId-ranking systems are best implemented by combining several NER systems. With appropriate combination methods, usefully accurate geneId-ranking systems can be constructed based on easily-available resources, without resorting to problem-specific, engineered components
Using Noun Phrases for Navigating Biomedical Literature on Pubmed: How Many Updates Are We Losing Track of?
Author-supplied citations are a fraction of the related literature for a paper. The “related citations” on PubMed is typically dozens or hundreds of results long, and does not offer hints why these results are related. Using noun phrases derived from the sentences of the paper, we show it is possible to more transparently navigate to PubMed updates through search terms that can associate a paper with its citations. The algorithm to generate these search terms involved automatically extracting noun phrases from the paper using natural language processing tools, and ranking them by the number of occurrences in the paper compared to the number of occurrences on the web. We define search queries having at least one instance of overlap between the author-supplied citations of the paper and the top 20 search results as citation validated (CV). When the overlapping citations were written by same authors as the paper itself, we define it as CV-S and different authors is defined as CV-D. For a systematic sample of 883 papers on PubMed Central, at least one of the search terms for 86% of the papers is CV-D versus 65% for the top 20 PubMed “related citations.” We hypothesize these quantities computed for the 20 million papers on PubMed to differ within 5% of these percentages. Averaged across all 883 papers, 5 search terms are CV-D, and 10 search terms are CV-S, and 6 unique citations validate these searches. Potentially related literature uncovered by citation-validated searches (either CV-S or CV-D) are on the order of ten per paper – many more if the remaining searches that are not citation-validated are taken into account. The significance and relationship of each search result to the paper can only be vetted and explained by a researcher with knowledge of or interest in that paper
- …