157 research outputs found

    How does our motor system determine its learning rate?

    Get PDF
    Motor learning is driven by movement errors. The speed of learning can be quantified by the learning rate, which is the proportion of an error that is corrected for in the planning of the next movement. Previous studies have shown that the learning rate depends on the reliability of the error signal and on the uncertainty of the motor system’s own state. These dependences are in agreement with the predictions of the Kalman filter, which is a state estimator that can be used to determine the optimal learning rate for each movement such that the expected movement error is minimized. Here we test whether not only the average behaviour is optimal, as the previous studies showed, but if the learning rate is chosen optimally in every individual movement. Subjects made repeated movements to visual targets with their unseen hand. They received visual feedback about their endpoint error immediately after each movement. The reliability of these error-signals was varied across three conditions. The results are inconsistent with the predictions of the Kalman filter because correction for large errors in the beginning of a series of movements to a fixed target was not as fast as predicted and the learning rates for the extent and the direction of the movements did not differ in the way predicted by the Kalman filter. Instead, a simpler model that uses the same learning rate for all movements with the same error-signal reliability can explain the data. We conclude that our brain does not apply state estimation to determine the optimal planning correction for every individual movement, but it employs a simpler strategy of using a fixed learning rate for all movements with the same level of error-signal reliability

    Minimally invasive stereotactic puncture and thrombolysis therapy improves long-term outcome after acute intracerebral hemorrhage

    Get PDF
    The purpose of this study was to judge the clinical value of minimally invasive stereotactic puncture and thrombolysis therapy (MISPTT) for acute intracerebral hemorrhage (ICH). A randomized control clinical trial was undertaken. According to the enrollment criteria, 122 acute ICH cases were analyzed, of which 64 cases received MISPTT (MISPTT group, MG) and 58 cases received conventional craniotomy (CC group, CG). The Glasgow coma scale (GCS) scores, postoperative complications (PC), and rebleeding incidences were compared. Moreover, 1 year postoperation, the long-term outcomes of patients with regard to hematoma volume (HV) <50 mL and HV ≥50 mL were judged, respectively, by the Glasgow outcome scale (GOS), Barthel index (BI), modified Rankin Scale (mRS), and case fatality (CF). MG patients showed obvious amelioration in GCS score compared with that of CG patients. The total incidence of PC in MG decreased compared with that of CG. The incidences of rebleeding in MG and CG were 9.4 and 17.2%, respectively (P = 0.243). There were no obvious differences between the CFs of MG and CG (17.2 and 25.9%, respectively, P = 0.199). The GOS, BI, and mRS representing long-term outcome for both HV <50 mL and HV ≥50 mL in MG were ameliorated significantly greater than that in CG patients (all P < 0.05). These data suggest that there are advantages with MISPTT not only in trauma and safety, but the MISPTT group had fewer complications and a trend toward improved short-term and long-term outcomes

    Mycobacteria activate γδ T-cell anti-tumour responses via cytokines from type 1 myeloid dendritic cells: a mechanism of action for cancer immunotherapy

    Get PDF
    Attenuated and heat-killed mycobacteria display demonstrable activity against cancer in the clinic; however, the induced immune response is poorly characterised and potential biomarkers of response ill-defined. We investigated whether three mycobacterial preparations currently used in the clinic (BCG and heat-killed Mycobacterium vaccae and Mycobacterium obuense) can stimulate anti-tumour effector responses in human γδ T-cells. γδ T-cell responses were characterised by measuring cytokine production, expression of granzyme B and cytotoxicity against tumour target cells. Results show that γδ T-cells are activated by these mycobacterial preparations, as indicated by upregulation of activation marker expression and proliferation. Activated γδ T-cells display enhanced effector responses, as shown by upregulated granzyme B expression, production of the TH1 cytokines IFN-γ and TNF-α, and enhanced degranulation in response to susceptible and zoledronic acid-treated resistant tumour cells. Moreover, γδ T-cell activation is induced by IL-12, IL-1β and TNF-α from circulating type 1 myeloid dendritic cells (DCs), but not from type 2 myeloid DCs or plasmacytoid DCs. Taken together, we show that BCG, M. vaccae and M. obuense induce γδ T-cell anti-tumour effector responses indirectly via a specific subset of circulating DCs and suggest a mechanism for the potential immunotherapeutic effects of BCG, M. vaccae and M. obuense in cancer

    Effects of prostratin on Cyclin T1/P-TEFb function and the gene expression profile in primary resting CD4(+ )T cells

    Get PDF
    BACKGROUND: The latent reservoir of human immunodeficiency virus type 1 (HIV-1) in resting CD4(+ )T cells is a major obstacle to the clearance of infection by highly active antiretroviral therapy (HAART). Recent studies have focused on searches for adjuvant therapies to activate this reservoir under conditions of HAART. Prostratin, a non tumor-promoting phorbol ester, is a candidate for such a strategy. Prostratin has been shown to reactivate latent HIV-1 and Tat-mediated transactivation may play an important role in this process. We examined resting CD4(+ )T cells from healthy donors to determine if prostratin induces Cyclin T1/P-TEFb, a cellular kinase composed of Cyclin T1 and Cyclin-dependent kinase-9 (CDK9) that mediates Tat function. We also examined effects of prostratin on Cyclin T2a, an alternative regulatory subunit for CDK9, and 7SK snRNA and the HEXIM1 protein, two factors that associate with P-TEFb and repress its kinase activity. RESULTS: Prostratin up-regulated Cyclin T1 protein expression, modestly induced CDK9 protein expression, and did not affect Cyclin T2a protein expression. Although the kinase activity of CDK9 in vitro was up-regulated by prostratin, we observed a large increase in the association of 7SK snRNA and the HEXIM1 protein with CDK9. Using HIV-1 reporter viruses with and without a functional Tat protein, we found that prostratin stimulation of HIV-1 gene expression appears to require a functional Tat protein. Microarray analyses were performed and several genes related to HIV biology, including APOBEC3B, DEFA1, and S100 calcium-binding protein genes, were found to be regulated by prostratin. CONCLUSION: Prostratin induces Cyclin T1 expression and P-TEFb function and this is likely to be involved in prostratin reactivation of latent HIV-1 proviruses. The large increase in association of 7SK and HEXIM1 with P-TEFb following prostratin treatment may reflect a requirement in CD4(+ )T cells for a precise balance between active and catalytically inactive P-TEFb. Additionally, genes regulated by prostratin were identified that have the potential to regulate HIV-1 replication both positively and negatively

    Deep Sequencing Whole Transcriptome Exploration of the σE Regulon in Neisseria meningitidis

    Get PDF
    Bacteria live in an ever-changing environment and must alter protein expression promptly to adapt to these changes and survive. Specific response genes that are regulated by a subset of alternative σ70-like transcription factors have evolved in order to respond to this changing environment. Recently, we have described the existence of a σE regulon including the anti-σ-factor MseR in the obligate human bacterial pathogen Neisseria meningitidis. To unravel the complete σE regulon in N. meningitidis, we sequenced total RNA transcriptional content of wild type meningococci and compared it with that of mseR mutant cells (ΔmseR) in which σE is highly expressed. Eleven coding genes and one non-coding gene were found to be differentially expressed between H44/76 wildtype and H44/76ΔmseR cells. Five of the 6 genes of the σE operon, msrA/msrB, and the gene encoding a pepSY-associated TM helix family protein showed enhanced transcription, whilst aniA encoding a nitrite reductase and nspA encoding the vaccine candidate Neisserial surface protein A showed decreased transcription. Analysis of differential expression in IGRs showed enhanced transcription of a non-coding RNA molecule, identifying a σE dependent small non-coding RNA. Together this constitutes the first complete exploration of an alternative σ-factor regulon in N. meningitidis. The results direct to a relatively small regulon indicative for a strictly defined response consistent with a relatively stable niche, the human throat, where N. meningitidis resides

    The importance of the cellular stress response in the pathogenesis and treatment of type 2 diabetes

    Get PDF
    Organisms have evolved to survive rigorous environments and are not prepared to thrive in a world of caloric excess and sedentary behavior. A realization that physical exercise (or lack of it) plays a pivotal role in both the pathogenesis and therapy of type 2 diabetes mellitus (t2DM) has led to the provocative concept of therapeutic exercise mimetics. A decade ago, we attempted to simulate the beneficial effects of exercise by treating t2DM patients with 3 weeks of daily hyperthermia, induced by hot tub immersion. The short-term intervention had remarkable success, with a 1 % drop in HbA1, a trend toward weight loss, and improvement in diabetic neuropathic symptoms. An explanation for the beneficial effects of exercise and hyperthermia centers upon their ability to induce the cellular stress response (the heat shock response) and restore cellular homeostasis. Impaired stress response precedes major metabolic defects associated with t2DM and may be a near seminal event in the pathogenesis of the disease, tipping the balance from health into disease. Heat shock protein inducers share metabolic pathways associated with exercise with activation of AMPK, PGC1-a, and sirtuins. Diabetic therapies that induce the stress response, whether via heat, bioactive compounds, or genetic manipulation, improve or prevent all of the morbidities and comorbidities associated with the disease. The agents reduce insulin resistance, inflammatory cytokines, visceral adiposity, and body weight while increasing mitochondrial activity, normalizing membrane structure and lipid composition, and preserving organ function. Therapies restoring the stress response can re-tip the balance from disease into health and address the multifaceted defects associated with the disease

    Modulation of 11β-hydroxysteroid dehydrogenase as a strategy to reduce vascular inflammation

    Get PDF
    Atherosclerosis is a chronic inflammatory disease in which initial vascular damage leads to extensive macrophage and lymphocyte infiltration. Although acutely glucocorticoids suppress inflammation, chronic glucocorticoid excess worsens atherosclerosis, possibly by exacerbating systemic cardiovascular risk factors. However, glucocorticoid action within the lesion may reduce neointimal proliferation and inflammation. Glucocorticoid levels within cells do not necessarily reflect circulating levels due to pre-receptor metabolism by 11β-hydroxysteroid dehydrogenases (11β-HSDs). 11β-HSD2 converts active glucocorticoids into inert 11-keto forms. 11β-HSD1 catalyses the reverse reaction, regenerating active glucocorticoids. 11β-HSD2-deficiency/ inhibition causes hypertension, whereas deficiency/ inhibition of 11β-HSD1 generates a cardioprotective lipid profile and improves glycemic control. Importantly, 11β-HSD1-deficiency/ inhibition is atheroprotective, whereas 11β-HSD2-deficiency accelerates atherosclerosis. These effects are largely independent of systemic risk factors, reflecting modulation of glucocorticoid action and inflammation within the vasculature. Here, we consider whether evidence linking the 11β-HSDs to vascular inflammation suggests these isozymes are potential therapeutic targets in vascular injury and atherosclerosis
    corecore