60 research outputs found

    The effect of follicular fluid hormones on oocyte recovery after ovarian stimulation: FSH level predicts oocyte recovery.

    Get PDF
    BackgroundOvarian stimulation for assisted reproductive technology (ART) overcomes the physiologic process to develop a single dominant follicle. However, following stimulation, egg recovery rates are not 100%. The objective of this study is to determine if the follicular fluid hormonal environment is associated with oocyte recovery.MethodsThis is a prospective study involving patients undergoing ART by standard ovarian stimulation protocols at an urban academic medical center. A total of 143 follicular fluid aspirates were collected from 80 patients. Concentrations of FSH, hCG, estradiol, progesterone, testosterone and prolactin were determined. A multivariable regression analysis was used to investigate the relationship between the follicular fluid hormones and oocyte recovery.ResultsIntrafollicular FSH was significantly associated with oocyte recovery after adjustment for hCG (Adjusted odds ratio (AOR) = 1.21, 95%CI 1.03-1.42). The hCG concentration alone, in the range tested, did not impact the odds of oocyte recovery (AOR = 0.99, 95%CI 0.93-1.07). Estradiol was significantly associated with oocyte recovery (AOR = 0.98, 95% CI 0.96-0.99). After adjustment for progesterone, the strength of association between FSH and oocyte recovery increased (AOR = 1.84, 95%CI 1.45-2.34).ConclusionThe relationship between FSH and oocyte recovery is significant and appears to work through mechanisms independent of the sex hormones. FSH may be important for the physiologic event of separation of the cumulus-oocyte complex from the follicle wall, thereby influencing oocyte recovery. Current methods for inducing the final stages of oocyte maturation, with hCG administration alone, may not be optimal. Modifications of treatment protocols utilizing additional FSH may enhance oocyte recovery

    A role for the chemokine receptor CCR6 in mammalian sperm motility and chemotaxis

    Get PDF
    Although recent evidence indicates that several chemokines and defensins, well-known as inflammatory mediators, are expressed in the male and female reproductive tracts, the location and functional significance of chemokine networks in sperm physiology and sperm reproductive tract interactions are poorly understood. To address this deficiency in our knowledge, we examined the expression and function in sperm of CCR6, a receptor common to several chemoattractant peptides, and screened several reproductive tract fluids for the presence of specific ligands. CCR6 protein is present in mouse and human sperm and mainly localized in the sperm tail with other minor patterns in sperm from mice (neck and acrosomal region) and men (neck and midpiece regions). As expected from the protein immunoblotting and immunofluorescence results, mouse Ccr6 mRNA is expressed in the testis. Furthermore, the Defb29 mRNA encoding the CCR6 ligand, β-defensin DEFB29, is expressed at high levels in the epididymis. As determined by protein chip analysis, several chemokines (including some that act through CCR6, such as CCL20/MIP-3α (formerly macrophage inflammatory protein 3α) and protein hormones were present in human follicular fluid, endometrial secretions, and seminal plasma. In functional chemotaxis assays, capacitated human sperm exhibited a directional movement towards CCL20, and displayed modifications in motility parameters. Our data indicate that chemokine ligand/receptor interactions in the male and female genital tracts promote sperm motility and chemotaxis under non-inflammatory conditions. Therefore, some of the physiological reactions mediated by CCR6 ligands in male reproduction extend beyond a pro-inflammatory response and might find application in clinical reproduction and/or contraception.Fil: Caballero Campo, Pedro. Clínica Tambre. Unidad de Reproducción Humana; España. University of California; Estados UnidosFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Benencia, Fabián. Ohio University; Estados UnidosFil: Conejo García, José R.. The Wistar Institute; Estados UnidosFil: Rinaudo, Paolo F.. University of California; Estados UnidosFil: Gerton, George L.. University of Pennsylvania; Estados Unido

    Preimplantation Mouse Embryo Selection Guided by Light-Induced Dielectrophoresis

    Get PDF
    Selection of optimal quality embryos for in vitro fertilization (IVF) transfer is critical to successful live birth outcomes. Currently, embryos are chosen based on subjective assessment of morphologic developmental maturity. A non-invasive means to quantitatively measure an embryo's developmental maturity would reduce the variability introduced by the current standard. We present a method that exploits the scaling electrical properties of pre-transfer embryos to quantitatively discern embryo developmental maturity using light-induced dielectrophoresis (DEP). We show that an embryo's DEP response is highly correlated with its developmental stage. Uniquely, this technique allows one to select, in sequence and under blinded conditions, the most developmentally mature embryos among a mixed cohort of morphologically indistinguishable embryos cultured in optimized and sub-optimal culture media. Following assay, embryos continue to develop normally in vitro. Light-induced dielectrophoresis provides a non-invasive, quantitative, and reproducible means to select embryos for applications including IVF transfer and embryonic stem cell harvest

    Nuclear localization of the mitochondrial factor HIGD1A during metabolic stress.

    Get PDF
    Cellular stress responses are frequently governed by the subcellular localization of critical effector proteins. Apoptosis-inducing Factor (AIF) or Glyceraldehyde 3-Phosphate Dehydrogenase (GAPDH), for example, can translocate from mitochondria to the nucleus, where they modulate apoptotic death pathways. Hypoxia-inducible gene domain 1A (HIGD1A) is a mitochondrial protein regulated by Hypoxia-inducible Factor-1α (HIF1α). Here we show that while HIGD1A resides in mitochondria during physiological hypoxia, severe metabolic stress, such as glucose starvation coupled with hypoxia, in addition to DNA damage induced by etoposide, triggers its nuclear accumulation. We show that nuclear localization of HIGD1A overlaps with that of AIF, and is dependent on the presence of BAX and BAK. Furthermore, we show that AIF and HIGD1A physically interact. Additionally, we demonstrate that nuclear HIGD1A is a potential marker of metabolic stress in vivo, frequently observed in diverse pathological states such as myocardial infarction, hypoxic-ischemic encephalopathy (HIE), and different types of cancer. In summary, we demonstrate a novel nuclear localization of HIGD1A that is commonly observed in human disease processes in vivo

    Follicular fluid content and oocyte quality: from single biochemical markers to metabolomics

    Get PDF
    The assessment of oocyte quality in human in vitro fertilization (IVF) is getting increasing attention from embryologists. Oocyte selection and the identification of the best oocytes, in fact, would help to limit embryo overproduction and to improve the results of oocyte cryostorage programs. Follicular fluid (FF) is easily available during oocyte pick-up and theorically represents an optimal source on non-invasive biochemical predictors of oocyte quality. Unfortunately, however, the studies aiming to find a good molecular predictor of oocyte quality in FF were not able to identify substances that could be used as reliable markers of oocyte competence to fertilization, embryo development and pregnancy. In the last years, a well definite trend toward passing from the research of single molecular markers to more complex techniques that study all metabolites of FF has been observed. The metabolomic approach is a powerful tool to study biochemical predictors of oocyte quality in FF, but its application in this area is still at the beginning. This review provides an overview of the current knowledge about the biochemical predictors of oocyte quality in FF, describing both the results coming from studies on single biochemical markers and those deriving from the most recent studies of metabolomic

    Mycorrhizal fungi suppress aggressive Agricultural weeds.

    Get PDF
    Plant growth responses to arbuscular mycorrhizal fungi (AMF) are highly variable, ranging from mutualism in a wide range of plants, to antagonism in some non-mycorrhizal plant species and plants characteristic of disturbed environments. Many agricultural weeds are non mycorrhizal or originate from ruderal environments where AMF are rare or absent. This led us to hypothesize that AMF may suppress weed growth, a mycorrhizal attribute which has hardly been considered. We investigated the impact of AMF and AMF diversity (three versus one AMF taxon) on weed growth in experimental microcosms where a crop (sunflower) was grown together with six widespread weed species. The presence of AMF reduced total weed biomass with 47% in microcosms where weeds were grown together with sunflower and with 25% in microcosms where weeds were grown alone. The biomass of two out of six weed species was significantly reduced by AMF (-66% & -59%) while the biomass of the four remaining weed species was only slightly reduced (-20% to -37%). Sunflower productivity was not influenced by AMF or AMF diversity. However, sunflower benefitted from AMF via enhanced phosphorus nutrition. The results indicate that the stimulation of arbuscular mycorrhizal fungi in agro-ecosystems may suppress some aggressive weeds

    In Vitro Fertilization Affects Growth and Glucose Metabolism in a Sex-Specific Manner in an Outbred Mouse Model1

    No full text
    The preimplantation period is a time of reprogramming that may be vulnerable to disruption. This question has wide clinical relevance since the number of children conceived by in vitro fertilization (IVF) is rising. To examine this question, outbred mice (CF1 × B6D2F1) conceived by IVF and cultured using Whitten medium and 20% O(2) (IVF(WM) group, less optimal) or K simplex optimized medium with amino acids and 5% O(2) (IVF(KAA) group, more optimal and similar to conditions used in human IVF) were studied postnatally. We found that flushed blastocysts transferred to recipient mice provided the best control group (FB group), as this accounted for the effects of superovulation, embryo transfer, and litter size. We observed that many physiological parameters were normal. Reassuringly, IVF(KAA) offspring did not differ significantly from FB offspring. However, male IVF(WM) mice (but not females) were larger during the first 19 wk of life and exhibited glucose intolerance. Male IVF(WM) mice also showed enlarged left heart despite normal blood pressure. Expression of candidate imprinted genes (H19, Igf2, and Slc38a4) in multiple adult tissues did not show differences among the groups; only Slc38a4 was down-regulated following IVF (in both culture conditions) in female adipose tissue. These studies demonstrate that adult metabolism is affected by the type of conditions encountered during the preimplantation stage. Further, the postnatal growth trajectory and glucose homeostasis following ex vivo manipulation may be sexual dimorphic. Future work on the long-term effects of IVF offspring should focus on glucose metabolism and the cardiovascular system

    LIMK1 regulates human trophoblast invasion/differentiation and is down-regulated in preeclampsia.

    Get PDF
    Successful human pregnancy requires extensive invasion of maternal uterine tissues by the placenta. Invasive extravillous trophoblasts derived from cytotrophoblast progenitors remodel maternal arterioles to promote blood flow to the placenta. In the pregnancy complication preeclampsia, extravillous trophoblasts invasion and vessel remodeling are frequently impaired, likely contributing to fetal underperfusion and maternal hypertension. We recently demonstrated in mouse trophoblast stem cells that hypoxia-inducible factor-2 (HIF-2)-dependent Lim domain kinase 1 (LIMK1) expression regulates invasive trophoblast differentiation by modulating the trophoblast cytoskeleton. Interestingly, in humans, LIMK1 activity promotes tumor cell invasion by modulating actin and microtubule integrity, as well as by modulating matrix metalloprotease processing. Here, we tested whether HIF-2α and LIMK1 expression patterns suggested similar roles in the human placenta. We found that LIMK1 immunoreactivity mirrored HIF-2α in the human placenta in utero and that LIMK1 activity regulated human cytotrophoblast cytoskeletal integrity, matrix metallopeptidase-9 secretion, invasion, and differentiation in vitro. Importantly, we also found that LIMK1 levels are frequently diminished in the preeclampsia setting in vivo. Our results therefore validate the use of mouse trophoblast stem cells as a discovery platform for human placentation disorders and suggest that LIMK1 activity helps promote human placental development in utero

    Fertility treatment increases the risk of preterm birth independent of multiple gestations

    No full text
    Objective: To investigate the complex interplay between fertility treatment, multiple gestations, and prematurity. Design: Retrospective cohort study linking the national Center for Disease Control and Prevention infant birth and death data from 2014 to 2018. Setting: National database from Center of Disease Control and Prevention. Patients: In total, 19,454,155 live-born infants with gestational ages 22–44 weeks, 114,645 infants born using non IVF fertility treatment (NIFT), and 179,960 via assisted reproductive technology (ART). Intervention: Noninvasive fertility treatment or ART vs. spontaneously conceived pregnancies. Main Outcome Measures: The main outcome assessed was prematurity. Formal mediation analysis was conducted to calculate the percentage mediated by multiple gestations. Results: Newborns born using NIFT or ART compared with those with no fertility treatment had a higher incidence of multiple gestation (no fertility treatment = 3.0%; NIFT = 24.7%; ART = 32.7%; P<.001) and prematurity (no fertility treatment = 11.2%; NIFT = 23.4%; ART = 28.4%; P<.001). Mediation analysis demonstrates that 76.8% (95% confidence interval [CI], 75.2%–78.1%) of the effect of NIFT on prematurity was mediated through multiple gestations. Similarly, 71.2% (95% CI, 70.8%–72.7%) of the effect of ART on prematurity is mediated through multiple gestation. However, the direct effect of NIFT on prematurity is 20.4% (95% CI, 19.0%–22.0%). The direct effect of ART was 24.7% (95% CI, 23.7%–25.6%). Conclusion: A significant proportion of prematurity associated with fertility treatment is mediated by the treatment itself, independent of multiple gestations
    corecore