6 research outputs found

    Electrochemical etching of AlGaN for the realization of thin-film devices

    Get PDF
    Heterogeneously integrated AlGaN epitaxial layers will be essential for future optical and electrical devices like thin-film flip-chip ultraviolet (UV) light-emitting diodes, UV vertical-cavity surface-emitting lasers, and high-electron mobility transistors on efficient heat sinks. Such AlGaN-membranes will also enable flexible and micromechanical devices. However, to develop a method to separate the AlGaN-device membranes from the substrate has proven to be challenging, in particular, for high-quality device materials, which require the use of a lattice-matched AlGaN sacrificial layer. We demonstrate an electrochemical etching method by which it is possible to achieve complete lateral etching of an AlGaN sacrificial layer with up to 50% Al-content. The influence of etching voltage and the Al-content of the sacrificial layer on the etching process is investigated. The etched N-polar surface shows the same macroscopic topography as that of the as-grown epitaxial structure, and the root-mean square roughness is 3.5 nm for 1 \ub5m x 1 \ub5m scan areas. Separated device layers have a well-defined thickness and smooth etched surfaces. Transferred multi-quantum-well structures were fabricated and investigated by time-resolved photoluminescence measurements. The quantum wells showed no sign of degradation caused by the thin-film process

    Carrier dynamics in blue and green InGaN LED structures

    No full text
    This thesis focuses on effects that are critical to achieving high internal quantum efficiency (IQE) in GaN-based light-emitting diodes (LEDs) that emit in a broad spectral range, from violet to green-yellow. These effects include interwell carrier transport in multiple quantum well (QW) structures, lateral transport in the QW plane, and radiative and nonradiative recombination.  The investigation is conducted with the time-integrated and time-resolved near- and far-field photoluminescence (PL) spectroscopy. Measurements are performed on polar single and multiple InxGa1-xN QW structures of different alloy compositions, which are supplemented with a self-consistent solution of one-dimensional Schrödinger and Poisson equations and an evaluation of the carrier density dynamics.  Interwell carrier transport is studied to determine the conditions required for a uniform interwell carrier distribution in an LED active region. Such a distribution would decrease the detrimental impact of the nonradiative Auger recombination and increase the IQE. Since the hole transport is the bottleneck for this process, ambipolar interwell transport, determined by the slower holes, is studied. Standard time-resolved PL measurements are performed on multiple QW structures with a different number of In0.12Ga0.88N QWs and different barrier parameters in terms of thickness and material. Photoexcited carrier transport over the multiple QW structure is monitored by measuring PL rise times from a deeper detector QW. Such measurements make it possible to distinguish the interwell transport mechanism at high temperatures (e.g., thermionic emission - ns range) and low temperatures (e.g., ballistic - sub-ps range). In standard InGaN/GaN structures, the interwell hole transport is found to be inefficient. Studies of transport and IQE in structures with InGaN barriers of different compositions, as well as thin GaN or AlGaN interlayers between the QWs and barriers, allowed the design of structures with fast, efficient interwell transport and high IQE. These measurements are performed for blue LED structures; however, the conclusions could be extended to QWs emitting at longer wavelengths, for which the issue of the nonuniform interwell carrier distribution is even more severe.  Studies of the carrier recombination and IQE are performed on single QWs with a focus on long wavelength (green, green-yellow) emitting structures, in which the IQE is much smaller than for the violet and blue-emitting wells. Radiative and nonradiative carrier recombination times are determined at different temperatures, revealing a record-high IQE of ∼60% in the green-yellow QWs.  Since nonradiative recombination is often assigned to extended defects, near-field spectroscopy is applied to study the impact of V-defects related to dislocations in polar GaN-based structures. The parameters of PL spectra, as well as radiative and nonradiative recombination times, show large spatial variations. The increased nonradiative recombination related to the dislocations is revealed only in their immediate vicinity, suggesting that their impact on the IQE and device performance, contrary to common belief, should be small.Avhandlingen fokuserar på effekter som är avgörande för att uppnå hög intern kvanteffektivitet (IQE) i GaN-baserade lysdioder (LED) som emitterar inom ett brett spektralområde, från violett till gröngult. Dessa effekter inkluderar laddningsbärartransport mellan brunnar i flera kvantbrunnar (QW)-strukturer, lateral transport i QW-planet och strålnings- och icke-strålningsrekombination.  Undersökningen gjordes genom tidsintegrerad och tidsupplöst fotoluminescensspektroskopi (PL) i när- och fjärrfält. Mätningar utfördes på polära enkla och multipla InxGa1-xN QW-strukturer bestående av olika legeringssammansättningar. De kompletterades med självkonsistent lösning av endimensionella Schrödinger- och Poisson-ekvationer och utvärdering av bärardensitetsdynamiken.  Laddningsbärartransporten mellan brunnar studerades för att bestämma förhållanden som krävs för en enhetlig bärarfördelning mellan brunnar i en aktiv LED-region. Sådan distribution skulle minska den skadliga effekten av den icke-strålande Auger-rekombinationen och öka IQE. Eftersom håltransporten är flaskhalsen under denna process, studerades ambipolär transport mellan brunnar, utifrån de långsammare hålen. Standard tidsupplösta PL-mätningar utfördes på flera QW-strukturer med olika antal In0,12Ga0,88N QW:er och olika barriärparametrar (tjocklek, material). Fotoexciterad bärartransport över den multipla QW-strukturen övervakades genom att mäta PL-stigningstider från en djupare detektor-QW. Sådana mätningar gjorde det möjligt att särskilja transportmekanismen mellan brunnar vid höga temperaturer (termionisk emission, ns-intervall) och låga temperaturer (ballistiskt, sub-ps-intervall). Det konstaterades att håltransporten mellan brunnar i standard InGaN/GaN-strukturer var ineffektiv. Studier av transport och IQE i strukturer med InGaN-barriärer av olika sammansättning, och tunna GaN- eller AlGaN-mellanskikt mellan QW:erna och barriärer möjliggjorde design av strukturer med snabb och effektiv transport mellan brunnar och hög IQE. Dessa mätningar utfördes för blå LED-strukturer; dock skulle slutsatserna kunna utvidgas till QW:er som emitterar vid längre våglängder och för vilka problemet med olikformig bärarfördelningen mellan brunnar är ännu större. Studier av laddningsbärarrekombinationen och IQE utfördes på enstaka kvantbrunnar med fokus på emitterande strukturer med lång våglängd (grön, grön-gul), där IQE är mycket mindre än för de violett och blåemitterande brunnarna. Strålande och icke-strålande bärarekombinationstider bestämdes vid olika temperaturer, vilket avslöjade en rekordhög IQE på ∼60 % i de gröngula QW:erna.  Eftersom den icke-strålande rekombinationen ofta tillskrivs utökade defekter, användes närfältsspektroskopi för att studera effekten av V-defekter relaterade till dislokationer i polära GaN-baserade strukturer. Parametrar för PL-spektra, samt strålande och icke-strålande rekombinationstider visade stora rumsliga variationer. Den ökade ickestrålande rekombinationen relaterad till dislokationerna avslöjades endast i deras omedelbara närhet, vilket tyder på att deras inverkan på IQE och enhetens prestanda, i motsats till vad man tror, borde vara liten

    Carrier dynamics in blue and green InGaN LED structures

    No full text
    This thesis focuses on effects that are critical to achieving high internal quantum efficiency (IQE) in GaN-based light-emitting diodes (LEDs) that emit in a broad spectral range, from violet to green-yellow. These effects include interwell carrier transport in multiple quantum well (QW) structures, lateral transport in the QW plane, and radiative and nonradiative recombination.  The investigation is conducted with the time-integrated and time-resolved near- and far-field photoluminescence (PL) spectroscopy. Measurements are performed on polar single and multiple InxGa1-xN QW structures of different alloy compositions, which are supplemented with a self-consistent solution of one-dimensional Schrödinger and Poisson equations and an evaluation of the carrier density dynamics.  Interwell carrier transport is studied to determine the conditions required for a uniform interwell carrier distribution in an LED active region. Such a distribution would decrease the detrimental impact of the nonradiative Auger recombination and increase the IQE. Since the hole transport is the bottleneck for this process, ambipolar interwell transport, determined by the slower holes, is studied. Standard time-resolved PL measurements are performed on multiple QW structures with a different number of In0.12Ga0.88N QWs and different barrier parameters in terms of thickness and material. Photoexcited carrier transport over the multiple QW structure is monitored by measuring PL rise times from a deeper detector QW. Such measurements make it possible to distinguish the interwell transport mechanism at high temperatures (e.g., thermionic emission - ns range) and low temperatures (e.g., ballistic - sub-ps range). In standard InGaN/GaN structures, the interwell hole transport is found to be inefficient. Studies of transport and IQE in structures with InGaN barriers of different compositions, as well as thin GaN or AlGaN interlayers between the QWs and barriers, allowed the design of structures with fast, efficient interwell transport and high IQE. These measurements are performed for blue LED structures; however, the conclusions could be extended to QWs emitting at longer wavelengths, for which the issue of the nonuniform interwell carrier distribution is even more severe.  Studies of the carrier recombination and IQE are performed on single QWs with a focus on long wavelength (green, green-yellow) emitting structures, in which the IQE is much smaller than for the violet and blue-emitting wells. Radiative and nonradiative carrier recombination times are determined at different temperatures, revealing a record-high IQE of ∼60% in the green-yellow QWs.  Since nonradiative recombination is often assigned to extended defects, near-field spectroscopy is applied to study the impact of V-defects related to dislocations in polar GaN-based structures. The parameters of PL spectra, as well as radiative and nonradiative recombination times, show large spatial variations. The increased nonradiative recombination related to the dislocations is revealed only in their immediate vicinity, suggesting that their impact on the IQE and device performance, contrary to common belief, should be small.Avhandlingen fokuserar på effekter som är avgörande för att uppnå hög intern kvanteffektivitet (IQE) i GaN-baserade lysdioder (LED) som emitterar inom ett brett spektralområde, från violett till gröngult. Dessa effekter inkluderar laddningsbärartransport mellan brunnar i flera kvantbrunnar (QW)-strukturer, lateral transport i QW-planet och strålnings- och icke-strålningsrekombination.  Undersökningen gjordes genom tidsintegrerad och tidsupplöst fotoluminescensspektroskopi (PL) i när- och fjärrfält. Mätningar utfördes på polära enkla och multipla InxGa1-xN QW-strukturer bestående av olika legeringssammansättningar. De kompletterades med självkonsistent lösning av endimensionella Schrödinger- och Poisson-ekvationer och utvärdering av bärardensitetsdynamiken.  Laddningsbärartransporten mellan brunnar studerades för att bestämma förhållanden som krävs för en enhetlig bärarfördelning mellan brunnar i en aktiv LED-region. Sådan distribution skulle minska den skadliga effekten av den icke-strålande Auger-rekombinationen och öka IQE. Eftersom håltransporten är flaskhalsen under denna process, studerades ambipolär transport mellan brunnar, utifrån de långsammare hålen. Standard tidsupplösta PL-mätningar utfördes på flera QW-strukturer med olika antal In0,12Ga0,88N QW:er och olika barriärparametrar (tjocklek, material). Fotoexciterad bärartransport över den multipla QW-strukturen övervakades genom att mäta PL-stigningstider från en djupare detektor-QW. Sådana mätningar gjorde det möjligt att särskilja transportmekanismen mellan brunnar vid höga temperaturer (termionisk emission, ns-intervall) och låga temperaturer (ballistiskt, sub-ps-intervall). Det konstaterades att håltransporten mellan brunnar i standard InGaN/GaN-strukturer var ineffektiv. Studier av transport och IQE i strukturer med InGaN-barriärer av olika sammansättning, och tunna GaN- eller AlGaN-mellanskikt mellan QW:erna och barriärer möjliggjorde design av strukturer med snabb och effektiv transport mellan brunnar och hög IQE. Dessa mätningar utfördes för blå LED-strukturer; dock skulle slutsatserna kunna utvidgas till QW:er som emitterar vid längre våglängder och för vilka problemet med olikformig bärarfördelningen mellan brunnar är ännu större. Studier av laddningsbärarrekombinationen och IQE utfördes på enstaka kvantbrunnar med fokus på emitterande strukturer med lång våglängd (grön, grön-gul), där IQE är mycket mindre än för de violett och blåemitterande brunnarna. Strålande och icke-strålande bärarekombinationstider bestämdes vid olika temperaturer, vilket avslöjade en rekordhög IQE på ∼60 % i de gröngula QW:erna.  Eftersom den icke-strålande rekombinationen ofta tillskrivs utökade defekter, användes närfältsspektroskopi för att studera effekten av V-defekter relaterade till dislokationer i polära GaN-baserade strukturer. Parametrar för PL-spektra, samt strålande och icke-strålande rekombinationstider visade stora rumsliga variationer. Den ökade ickestrålande rekombinationen relaterad till dislokationerna avslöjades endast i deras omedelbara närhet, vilket tyder på att deras inverkan på IQE och enhetens prestanda, i motsats till vad man tror, borde vara liten

    Top-down fabrication of high quality gallium indium phosphide nanopillar/disk array structures

    No full text
    In this work, top-down fabrication methods for fabricating high optical quality gallium indium phosphide (GaInP) nanopillar/disk arrays are investigated for optoelectronic applications. Time-resolved photoluminescence (TRPL) measurements are used to characterize the fabricated nanostructures and the results are compared to the properties of a reference GaInP ‘slab’. Photoluminescence (PL) spectra and carrier lifetimes are characterized for the fabricated GaInP structures embedded in a highly transparent film. Additionally, using GaInP structures on a gallium arsenide (GaAs) substrate the effect of a sulphur-oleylamine based surface passivation procedure is investigated. This was done for the purpose of improving the PL intensities, increase carrier lifetimes and prevent photodegradation by passivating the surface states.QC 20201026</p

    Top-down fabrication of high quality gallium indium phosphide nanopillar/disk array structures

    No full text
    In this work, top-down fabrication methods for fabricating high optical quality gallium indium phosphide (GaInP) nanopillar/disk arrays are investigated for optoelectronic applications. Time-resolved photoluminescence (TRPL) measurements are used to characterize the fabricated nanostructures and the results are compared to the properties of a reference GaInP ‘slab’. Photoluminescence (PL) spectra and carrier lifetimes are characterized for the fabricated GaInP structures embedded in a highly transparent film. Additionally, using GaInP structures on a gallium arsenide (GaAs) substrate the effect of a sulphur-oleylamine based surface passivation procedure is investigated. This was done for the purpose of improving the PL intensities, increase carrier lifetimes and prevent photodegradation by passivating the surface states.QC 20201026</p
    corecore