14 research outputs found

    Peraturan Bersama Menteri Agama dan Menteri dalam Negeri Nomor 08 dan 09 Tahun 2006 Tentang Pendirian Rumah Ibadat (Kajian dalam Perspektif Hak Asasi Manusia )

    Full text link
    Pundamental 1945 Constitution as the rule has been set explicitly for religious freedom in the run by followers, who belong to one human rights has, but in reality the persecution of religious life and often inevitable. Between religious persecution can come from various directions such as harassing each other, mutual intimidate(violence) and that most often occurs between religious persecution that is prihal establishment synagogue. Therefore, in terms of the establishment of the synagogue there must be government intervention to regulate it, if in this case given the freedom and without any clear rules, the sectarian conflict will not be able to avoid. One step from the government to avoid conflict in the establishment of the synagogue is to be issued the Joint Decree of the Minister of Religious Affairs and the Minister of Home Affairs Number 08 and Number 09 Year 2006 About the Construction of Houses of Worship that aims to create harmony and peace between religious and have certainty Strong law

    Synthesis, Structural and Magnetic Properties of Ternary Complexes of (Me<sub>4</sub>P<sup>+</sup>)·{[Fe(I)Pc(−2)]<sup>−</sup>}·Triptycene and (Me<sub>4</sub>P<sup>+</sup>)·{[Fe(I)Pc(−2)]<sup>−</sup>}·(<i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′‑Tetrabenzyl‑<i>p</i>‑phenylenediamine)<sub>0.5</sub> with Iron(I) Phthalocyanine Anions

    No full text
    Ternary complexes of (Me<sub>4</sub>P<sup>+</sup>)·{[Fe­(I)­Pc­(−2)]<sup>−</sup>}·TPC (<b>1</b>) and (Me<sub>4</sub>P<sup>+</sup>)·{[Fe­(I)­Pc­(−2)]<sup>−</sup>}·(TBPDA)<sub>0.5</sub> (<b>2</b>) containing iron­(I) phthalocyanine anions, tetramethylphosphonium cations (Me<sub>4</sub>P<sup>+</sup>), and neutral structure-forming triptycene (TPC) or <i>N</i>,<i>N</i>,<i>N</i>′,<i>N</i>′-tetrabenzyl-<i>p</i>-phenylenediamine (TBPDA) molecules have been obtained as single crystals. In contrast to previously studied ionic compounds with monomeric [(Fe­(I)­Pc(−2)]<sup>−</sup> anions, the anions form coordination {[Fe­(I)­Pc(−2)]<sup>−</sup>}<sub>2</sub> dimers both in <b>1</b> and <b>2</b>, in which a nitrogen atom of one phthalocyanine anion weakly coordinates to the iron­(I) atom of neighboring [Fe­(I)­Pc(−2)]<sup>−</sup>. The Fe···N distances in the dimers are 3.08(1) and 3.12(1) Å in <b>1</b> at 280 K and 2.986(5) (100 K) and 3.011(5) Å (180 K) in <b>2</b>. The {[Fe­(I)­Pc(−2)]<sup>−</sup>}<sub>2</sub> dimers are packed in the layers in <b>1</b> arranged parallel to the <i>ac</i> plane and in isolated chains in <b>2</b> arranged along the <i>a</i> axis. Extended Hückel based calculation of intermolecular overlap integrals showed stronger and weaker π–π interactions within and between phthalocyanine dimers, respectively, both in <b>1</b> and <b>2</b>. EPR signals of both complexes manifest two components. An major low-field asymmetric component is attributed to the Fe­(I) atoms with the d<sup>7</sup> configuration. An origin minor narrow signal with <i>g</i>-factor close to the free-electron value (<i>g</i> = 2.0018–2.0035) is assigned to partial electron density transfer from the iron­(I) center to the phthalocyanine macrocycle and the formation of the [Fe­(II)­Pc(−3)]<sup>−</sup> species. Effective magnetic moments of the complexes of 1.69 (<b>1</b>) and 1.76 μ<sub>B</sub> (<b>2</b>) correspond to the contribution of about one <i>S</i> = <sup>1</sup>/<sub>2</sub> spin per formula unit in accordance with low-spin state of [Fe­(I)­Pc(−2)]<sup>−</sup>. Negative Weiss temperatures of −7.6 K (<b>1</b>) and −13 K (<b>2</b>) in the 30–300 K range indicate antiferromagnetic interaction of spins in the phthalocyanine dimers. The multicomponent approach was previously proposed for the anionic fullerene complex formation. It also seems very promising to design and synthesize anionic phthalocyanine complexes with one- and two-dimensional macrocycle arrangements

    Spin Crossover in Anionic Cobalt-Bridged Fullerene (Bu<sub>4</sub>N<sup>+</sup>){Co(Ph<sub>3</sub>P)}<sub>2</sub>(μ<sub>2</sub>‑Cl<sup>–</sup>)(μ<sub>2</sub>‑η<sup>2</sup>,η<sup>2</sup>‑C<sub>60</sub>)<sub>2</sub> Dimers

    No full text
    A spin crossover phenomena is observed in an anionic (Bu<sub>4</sub>N<sup>+</sup>)­{Co­(Ph<sub>3</sub>P)}<sub>2</sub>(μ<sub>2</sub>-Cl<sup>–</sup>)­(μ<sub>2</sub>-η<sup>2</sup>,η<sup>2</sup>-C<sub>60</sub>)<sub>2</sub>·2C<sub>6</sub>H<sub>14</sub> (<b>1</b>) complex in which two cobalt atoms bridge two fullerene molecules to form a dimer. The dimer has a triplet ground state with two weakly coupling Co<sup>0</sup> atoms (<i>S</i> = 1/2). The spin transition realized above 150 K is accompanied by a cobalt-to-fullerene charge transfer that forms a quintet excited state with a high spin Co<sup>I</sup> (<i>S</i> = 1) and C<sub>60</sub><sup>•–</sup> (<i>S</i> = 1/2)

    Spin Crossover in Anionic Cobalt-Bridged Fullerene (Bu<sub>4</sub>N<sup>+</sup>){Co(Ph<sub>3</sub>P)}<sub>2</sub>(μ<sub>2</sub>‑Cl<sup>–</sup>)(μ<sub>2</sub>‑η<sup>2</sup>,η<sup>2</sup>‑C<sub>60</sub>)<sub>2</sub> Dimers

    No full text
    A spin crossover phenomena is observed in an anionic (Bu<sub>4</sub>N<sup>+</sup>)­{Co­(Ph<sub>3</sub>P)}<sub>2</sub>(μ<sub>2</sub>-Cl<sup>–</sup>)­(μ<sub>2</sub>-η<sup>2</sup>,η<sup>2</sup>-C<sub>60</sub>)<sub>2</sub>·2C<sub>6</sub>H<sub>14</sub> (<b>1</b>) complex in which two cobalt atoms bridge two fullerene molecules to form a dimer. The dimer has a triplet ground state with two weakly coupling Co<sup>0</sup> atoms (<i>S</i> = 1/2). The spin transition realized above 150 K is accompanied by a cobalt-to-fullerene charge transfer that forms a quintet excited state with a high spin Co<sup>I</sup> (<i>S</i> = 1) and C<sub>60</sub><sup>•–</sup> (<i>S</i> = 1/2)

    Magnetic and Optical Properties of Layered (Me<sub>4</sub>P<sup>+</sup>)[M<sup>IV</sup>O(Pc<sup>•3–</sup>)]<sup>•–</sup>(TPC)<sub>0.5</sub>·C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> Salts (M = Ti and V) Composed of π‑Stacking Dimers of Titanyl and Vanadyl Phthalocyanine Radical Anions

    No full text
    Two isostructural salts with radical anions of titanyl and vanadyl phthalocyanines (Me<sub>4</sub>P<sup>+</sup>)­[M<sup>IV</sup>O­(Pc<sup>•3–</sup>)]<sup>•–</sup>­(TPC)<sub>0.5</sub>­·C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (M = Ti (<b>1</b>), V (<b>2</b>)), where TPC is triptycene, were obtained. These salts contain phthalocyanine layers composed of the {[M<sup>IV</sup>O­(Pc<sup>•3–</sup>)]<sup>•–</sup>}<sub>2</sub> dimers with strong π–π intradimer interaction. The reduction of metal phthalocyanines was centered on the Pc macrocycles providing the appearance of new bands in the near infrared range and a blue shift of Q- and Soret bands. That results in the alternation of shorter and longer C–N<sub>imine</sub> bonds in Pc<sup>•3–</sup>. Only one <i>S</i> = 1/2 spin is delocalized over Pc<sup>•3–</sup> in <b>1</b> providing a χ<sub>M</sub><i>T</i> value of 0.364 emu K mol<sup>–1</sup> at 300 K. Salt <b>1</b> showed antiferromagnetic behavior approximated by the Heisenberg model for isolated pairs of antiferromagnetically interacting spins with exchange interaction of <i>J</i>/<i>k</i><sub>B</sub> = −123.0 K. The χ<sub>M</sub><i>T</i> value for <b>2</b> is equal to 0.617 emu K mol<sup>–1</sup> at 300 K to show the contribution of two <i>S</i> = 1/2 spins localized on V<sup>IV</sup> and delocalized over Pc<sup>•3–</sup>. Magnetic behavior of <b>2</b> is described by the Heisenberg model for a four-spin system with strong intermolecular coupling between Pc<sup>•3–</sup> in {[V<sup>IV</sup>O­(Pc<sup>•3–</sup>)]<sup>•–</sup>}<sub>2</sub> (<i>J</i><sub>inter</sub>/<i>k</i><sub>B</sub> = −105.0 K) and weaker intramolecular coupling between the V<sup>IV</sup> and Pc<sup>•3–</sup> (<i>J</i><sub>intra</sub>/<i>k</i><sub>B</sub> = −15.2 K)

    Coordination Complexes of Pentamethylcyclopentadienyl Iridium(III) Diiodide with Tin(II) Phthalocyanine and Pentamethylcyclopentadienyl Iridium(II) Halide with Fullerene C<sub>60</sub><sup>–</sup> Anions

    No full text
    Synthetic approaches to iridium complexes of metal phthalocyanines (Pc) and fullerene anions have been developed to give three types of complexes. The compound­{(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}·2C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>1</b>) (Cp* is pentamethylcyclopentadienyl) is the first crystalline complex of a metal phthalocyanine in which an iridium­(III) atom is bonded to the central tin­(II) atom of Pc via a Sn–Ir bond length of 2.58 Å. In (TBA<sup>+</sup>)­(C<sub>60</sub><sup>•–</sup>)­{(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}·0.5C<sub>6</sub>H<sub>14</sub> (<b>2</b>), the {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)} units cocrystallize with (TBA<sup>+</sup>)­(C<sub>60</sub><sup>•–</sup>) to form double chains of C<sub>60</sub><sup>•–</sup> anions and closely packed chains of {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}. Interactions between the fullerene and phthalocyanine subsystems are realized through π–π stacking of the Cp* groups of {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)} and the C<sub>60</sub><sup>•–</sup> pentagons. Furthermore, the spins of the C<sub>60</sub><sup>•–</sup> are strongly antiferromagnetically coupled in the chains with an exchange interaction <i>J</i>/<i>k</i><sub>B</sub> = −31 K. Anionic (TBA<sup>+</sup>)­{(Cp*Ir<sup>II</sup>Cl)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)}·1.34C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>3</b>) and (TBA<sup>+</sup>)­{(Cp*Ir<sup>II</sup>I)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)}·1.3C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub>·0.2C<sub>6</sub>H<sub>14</sub> (<b>4</b>) are the first transition metal complexes containing η<sup>2</sup>-bonded C<sub>60</sub><sup>–</sup> anions, with the Cp*Ir<sup>II</sup>Cl and Cp*Ir<sup>II</sup>I units η<sup>2</sup>-coordinated to the 6–6 bonds of C<sub>60</sub><sup>–</sup>. Magnetic measurements indicate diamagnetism of the {(Cp*Ir<sup>II</sup>Cl)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)} and {(Cp*Ir<sup>II</sup>I)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)} anions due to the formation of a coordination bond between two initially paramagnetic Cp*Ir<sup>II</sup>Cl or Cp*Ir<sup>II</sup>I groups and C<sub>60</sub><sup>•–</sup> units. DFT calculations support a diamagnetic singlet ground state of <b>4</b>, in which the singlet–triplet energy gap is greater than 0.8 eV. DFT calculations also indicate that the C<sub>60</sub> molecules are negatively charged

    Coordination Complexes of Pentamethylcyclopentadienyl Iridium(III) Diiodide with Tin(II) Phthalocyanine and Pentamethylcyclopentadienyl Iridium(II) Halide with Fullerene C<sub>60</sub><sup>–</sup> Anions

    No full text
    Synthetic approaches to iridium complexes of metal phthalocyanines (Pc) and fullerene anions have been developed to give three types of complexes. The compound­{(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}·2C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>1</b>) (Cp* is pentamethylcyclopentadienyl) is the first crystalline complex of a metal phthalocyanine in which an iridium­(III) atom is bonded to the central tin­(II) atom of Pc via a Sn–Ir bond length of 2.58 Å. In (TBA<sup>+</sup>)­(C<sub>60</sub><sup>•–</sup>)­{(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}·0.5C<sub>6</sub>H<sub>14</sub> (<b>2</b>), the {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)} units cocrystallize with (TBA<sup>+</sup>)­(C<sub>60</sub><sup>•–</sup>) to form double chains of C<sub>60</sub><sup>•–</sup> anions and closely packed chains of {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}. Interactions between the fullerene and phthalocyanine subsystems are realized through π–π stacking of the Cp* groups of {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)} and the C<sub>60</sub><sup>•–</sup> pentagons. Furthermore, the spins of the C<sub>60</sub><sup>•–</sup> are strongly antiferromagnetically coupled in the chains with an exchange interaction <i>J</i>/<i>k</i><sub>B</sub> = −31 K. Anionic (TBA<sup>+</sup>)­{(Cp*Ir<sup>II</sup>Cl)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)}·1.34C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>3</b>) and (TBA<sup>+</sup>)­{(Cp*Ir<sup>II</sup>I)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)}·1.3C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub>·0.2C<sub>6</sub>H<sub>14</sub> (<b>4</b>) are the first transition metal complexes containing η<sup>2</sup>-bonded C<sub>60</sub><sup>–</sup> anions, with the Cp*Ir<sup>II</sup>Cl and Cp*Ir<sup>II</sup>I units η<sup>2</sup>-coordinated to the 6–6 bonds of C<sub>60</sub><sup>–</sup>. Magnetic measurements indicate diamagnetism of the {(Cp*Ir<sup>II</sup>Cl)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)} and {(Cp*Ir<sup>II</sup>I)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)} anions due to the formation of a coordination bond between two initially paramagnetic Cp*Ir<sup>II</sup>Cl or Cp*Ir<sup>II</sup>I groups and C<sub>60</sub><sup>•–</sup> units. DFT calculations support a diamagnetic singlet ground state of <b>4</b>, in which the singlet–triplet energy gap is greater than 0.8 eV. DFT calculations also indicate that the C<sub>60</sub> molecules are negatively charged

    Formation of {Co(dppe)}<sub>2</sub>{μ<sub>2</sub>‑η<sup>2</sup>:η<sup>2</sup>‑η<sup>2</sup>:η<sup>2</sup>‑[(C<sub>60</sub>)<sub>2</sub>]} Dimers Bonded by Single C–C Bonds and Bridging η<sup>2</sup>‑Coordinated Cobalt Atoms

    No full text
    Coordination of two bridging cobalt atoms to fullerenes by the η<sup>2</sup> type in {Co­(dppe)}<sub>2</sub>{μ<sub>2</sub>-η<sup>2</sup>:η<sup>2</sup>-η<sup>2</sup>:η<sup>2</sup>-[(C<sub>60</sub>)<sub>2</sub>]}·3C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> [<b>1</b>; dppe = 1,2-bis­(diphenylphosphino)­ethane] triggers fullerene dimerization with the formation of two intercage C–C bonds of 1.571(4) Å length. Coordination-induced fullerene dimerization opens a path to the design of fullerene structures bonded by both covalent C–C bonds and η<sup>2</sup>-coordination-bridged metal atoms

    Interligand Charge Transfer in a Complex of Deprotonated <i>cis</i>-Indigo Dianions and Tin(II) Phthalocyanine Radical Anions with Cp*Ir<sup>III</sup>

    No full text
    A diamagnetic complex, {(<i>cis</i>-indigo-<i>N</i>,<i>N</i>)<sup>2–</sup>(Cp*Ir<sup>III</sup>)} (<b>1</b>), in which deprotonated <i>cis</i>-indigo dianions coordinate an iridium center through two nitrogen atoms was obtained. By employment of the ability of the iridium center in <b>1</b> to coordinate an additional ligand, the complex [(Bu<sub>4</sub>N<sup>+</sup>)<sub>2</sub>{[Sn<sup>II</sup>(Pc<sup>•3–</sup>)]­(<i>cis</i>-indigo-<i>N</i>,<i>N</i>)<sup>2–</sup>Cp*Ir<sup>III</sup>}<sup>•–</sup><sub>2</sub>·0.5­(H<sub>2</sub>Indigo)·2.5C<sub>6</sub>H<sub>4</sub>C<sub>l2</sub> (<b>2</b>), which has two functional ligands coordinating an Ir<sup>III</sup> center, was obtained. This complex has a magnetic moment of 1.71 μ<sub>B</sub> at 300 K, in accordance with an <i>S</i> = 1/2 spin state. The spin density is mainly delocalized over the Pc<sup>•3–</sup> macrocycle and partially on (<i>cis</i>-indigo-<i>N</i>,<i>N</i>)<sup>2–</sup>. Due to an effective π–π interaction, a thermally activated charge transfer from [Sn<sup>II</sup>(Pc<sup>•3–</sup>)]<sup>•–</sup> to (<i>cis</i>-indigo-<i>N</i>,<i>N</i>)<sup>2–</sup> is observed, with an estimated Gibbs energy (−Δ<i>G</i>°) of 9.27 ± 0.18 kJ/mol. The deprotonation of indigo associated with the coordination of Ir<sup>III</sup> by the indigo releases H<sup>+</sup> ions, which protonate noncoordinating indigo molecules to produce leuco <i>cis</i>-indigo (H<sub>2</sub>Indigo). One H<sub>2</sub>indigo links two (<i>cis</i>-indigo-<i>N</i>,<i>N</i>)<sup>2–</sup> dianions in <b>2</b> to produce strong N–H···OC and O–H···OC hydrogen-bonding interactions

    Coordination Complexes of Pentamethylcyclopentadienyl Iridium(III) Diiodide with Tin(II) Phthalocyanine and Pentamethylcyclopentadienyl Iridium(II) Halide with Fullerene C<sub>60</sub><sup>–</sup> Anions

    No full text
    Synthetic approaches to iridium complexes of metal phthalocyanines (Pc) and fullerene anions have been developed to give three types of complexes. The compound­{(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}·2C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>1</b>) (Cp* is pentamethylcyclopentadienyl) is the first crystalline complex of a metal phthalocyanine in which an iridium­(III) atom is bonded to the central tin­(II) atom of Pc via a Sn–Ir bond length of 2.58 Å. In (TBA<sup>+</sup>)­(C<sub>60</sub><sup>•–</sup>)­{(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}·0.5C<sub>6</sub>H<sub>14</sub> (<b>2</b>), the {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)} units cocrystallize with (TBA<sup>+</sup>)­(C<sub>60</sub><sup>•–</sup>) to form double chains of C<sub>60</sub><sup>•–</sup> anions and closely packed chains of {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)}. Interactions between the fullerene and phthalocyanine subsystems are realized through π–π stacking of the Cp* groups of {(Cp*Ir<sup>III</sup>I<sub>2</sub>)­Sn<sup>II</sup>Pc­(2−)} and the C<sub>60</sub><sup>•–</sup> pentagons. Furthermore, the spins of the C<sub>60</sub><sup>•–</sup> are strongly antiferromagnetically coupled in the chains with an exchange interaction <i>J</i>/<i>k</i><sub>B</sub> = −31 K. Anionic (TBA<sup>+</sup>)­{(Cp*Ir<sup>II</sup>Cl)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)}·1.34C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub> (<b>3</b>) and (TBA<sup>+</sup>)­{(Cp*Ir<sup>II</sup>I)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)}·1.3C<sub>6</sub>H<sub>4</sub>Cl<sub>2</sub>·0.2C<sub>6</sub>H<sub>14</sub> (<b>4</b>) are the first transition metal complexes containing η<sup>2</sup>-bonded C<sub>60</sub><sup>–</sup> anions, with the Cp*Ir<sup>II</sup>Cl and Cp*Ir<sup>II</sup>I units η<sup>2</sup>-coordinated to the 6–6 bonds of C<sub>60</sub><sup>–</sup>. Magnetic measurements indicate diamagnetism of the {(Cp*Ir<sup>II</sup>Cl)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)} and {(Cp*Ir<sup>II</sup>I)­(η<sup>2</sup>-C<sub>60</sub><sup>–</sup>)} anions due to the formation of a coordination bond between two initially paramagnetic Cp*Ir<sup>II</sup>Cl or Cp*Ir<sup>II</sup>I groups and C<sub>60</sub><sup>•–</sup> units. DFT calculations support a diamagnetic singlet ground state of <b>4</b>, in which the singlet–triplet energy gap is greater than 0.8 eV. DFT calculations also indicate that the C<sub>60</sub> molecules are negatively charged
    corecore