58 research outputs found

    Fucoxanthin attenuates LPS-induced acute lung injury via inhibition of the TLR4/MYD88 signaling axis

    Get PDF
    Acute lung injury (ALI) is a critical clinical condition with a high mortality rate. It is believed that the inflammatory storm is a critical contributor to the occurrence of ALI. Fucoxanthin is a natural extract from marine seaweed with remarkable biological properties, including antioxidant, anti-tumor, and anti-obesity. However, the anti-inflammatory activity of Fucoxanthin has not been extensively studied. The current study aimed to elucidate the effects and the molecular mechanism of Fucoxanthin on lipopolysaccharide-induced acute lung injury. In this study, Fucoxanthin efficiently reduced the mRNA expression of pro-inflammatory factors, including IL-10, IL-6, iNOS, and Cox-2, and down-regulated the NF-kappaB signaling pathway in Raw264.7 macrophages. Furthermore, based on the network pharmacological analysis, our results showed that anti-inflammation signaling pathways were screened as fundamental action mechanisms of Fucoxanthin on ALI. Fucoxanthin also significantly ameliorated the inflammatory responses in LPS-induced ALI mice. Interestingly, our results revealed that Fucoxanthin prevented the expression of TLR4/MyD88 in Raw264.7 macrophages. We further validated Fucoxanthin binds to the TLR4 pocket using molecular docking simulations. Altogether, these results suggest that Fucoxanthin suppresses the TLR4/MyD88 signaling axis by targeting TLR4, which inhibits LPS-induced ALI, and fucoxanthin inhibition may provide a novel strategy for controlling the initiation and progression of ALI

    Identification and Heterologous Reconstitution of a 5-Alk(en)ylresorcinol Synthase from Endophytic Fungus \u3ci\u3eShiraia\u3c/i\u3e sp. Slf14

    Get PDF
    A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6\u27-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8\u27-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane and 1,3-dihydroxyphenyl-5-cis-10\u27-heptadecene, respectively, based on the spectral data and biosynthetic origin. Expression of SsARS in the yeast also led to the synthesis of the same polyketide products, indicating that this enzyme can be reconstituted in both heterologous hosts. Supplementation of soybean oil into the culture of E. coli BL21(DE3)/SsARS increased the production titers of 1-6 and led to the synthesis of an additional product, which was identified as 5-(8\u27Z,11\u27Z-heptadecadienyl)resorcinol. This work thus allowed the identification of SsARS as a 5-alk(en)ylresorcinol synthase with flexible substrate specificity toward endogenous and exogenous fatty acids. Desired resorcinol derivatives may be synthesized by supplying corresponding fatty acids into the culture medium

    Identification and Structure–Activity Relationship of Recovered Phenolics with Antioxidant and Antihyperglycemic Potential from Sugarcane Molasses Vinasse

    No full text
    Sugarcane molasses vinasse is the residue of the fermentation of molasses and the water and soil environmental pollutants from distilleries. However, its recycling value has been neglected. The chemical analysis of the molasses vinasse led to the isolation of a new benzoyl chloride called 2,3,4-trihydroxy-5-methoxy benzoyl chloride, as well as thirteen known compounds, including six benzoic acids. The structure of the new benzoyl chloride was elucidated on the basis of extensive spectroscopic analysis. The antioxidant activity of all isolated compounds was measured using the ORAC assay. Moreover, we compared the cellular antioxidant activity (CAA) and inhibitory activity against α-amylase and α-glucosidase for structure–activity analysis. The results showed that only vanillic acid had CAA (8.64 μmol QE/100 μmol in the no PBS wash protocol and 6.18 μmol QE/100 μmol in the PBS wash protocol), although other benzoic acid derivatives had high ORAC values ranging between 1879.9 and 32,648.1 μmol TE/g. Additional methoxy groups at the ortho-positions of the p-hydroxy group of benzoic acids enhanced the inhibition of α-glucosidase but reduced the ORAC activity unless at the para-position. This work indicated that phenolics, especially phenolic acids in the sugarcane molasses vinasse, possessed potential antioxidant and antihyperglycemic activity, which improved the utilization rate of resources and reduced the discharge of pollutants

    Natural Products from the Genus Tephrosia

    No full text
    The genus Tephrosia, belonging to the Leguminosae family, is a large pantropical genus of more than 350 species, many of which have important traditional uses in agriculture. This review not only outlines the source, chemistry and biological evaluations of natural products from the genus Tephrosia worldwide that have appeared in literature from 1910 to December 2013, but also covers work related to proposed biosynthetic pathways and synthesis of some natural products from the genus Tephrosia, with 105 citations and 168 new compounds

    Chemical Composition and Cytotoxic Activities of Petroleum Ether Fruit Extract of Fruits of Brucea javanica (Simarubaceae)

    Get PDF
    Purpose: To investigate the chemical composition and antitumor activity of the petroleum ether extract of the dried ripe fruits of Brucea javanica . Methods: The composition of petroleum ether extract was analyzed by gas chromatography/mass spectrometric (GC/MS) and their antitumor activities were determined by MTT assay. Results: GC/MS spectrometry results indicate that the petroleum ether extract was a mixture of esters, fatty acids, sterides, pregnanones, terpenes, alkaloids, alkenes, alcohols, ketones, aldehydes and other compounds. The results also revealed the significant antitumor activity of the extract with IC50 of 9.14, 12.45, 15.15, 16.13, 22.26, and 27.97 μg/mL against A549, CNE, MCF-7, NCI-H460, HepG2, and KB-3-1 cell lines, respectively. Conclusion: The study establishes the chemical composition and cytotoxic activity of the petroleum ether extract of the plant fruits. There is need for further investigations to isolate more potent compounds and structurally modify the known compounds to retain activity and lower toxicity and thus lead to the possible development of Brucea javanica oil

    Molecular Details of Actinomycin D-Treated MRSA Revealed via High-Dimensional Data

    No full text
    Methicillin-resistant Staphylococcus aureus (MRSA) is highly concerning as a principal infection pathogen. The investigation of higher effective natural anti-MRSA agents from marine Streptomyces parvulus has led to the isolation of actinomycin D, that showed potential anti-MRSA activity with MIC and MBC values of 1 and 8 μg/mL, respectively. Proteomics-metabolomics analysis further demonstrated a total of 261 differential proteins and 144 differential metabolites induced by actinomycin D in MRSA, and the co-mapped correlation network of omics, indicated that actinomycin D induced the metabolism pathway of producing the antibiotic sensitivity in MRSA. Furthermore, the mRNA expression levels of the genes acnA, ebpS, clfA, icd, and gpmA related to the key differential proteins were down-regulated measured by qRT-PCR. Molecular docking predicted that actinomycin D was bound to the targets of the two key differential proteins AcnA and Icd by hydrogen bonds and interacted with multiple amino acid residues of the proteins. Thus, these findings will provide a basic understanding to further investigation of actinomycin D as a potential anti-MRSA agent

    Multi-Omics Analysis Reveals Anti-Staphylococcus aureus Activity of Actinomycin D Originating from Streptomyces parvulus

    No full text
    Staphylococcus aureus (S. aureus) is a common pathogen that causes various serious diseases, including chronic infections. Discovering new antibacterial agents is an important aspect of the pharmaceutical field because of the lack of effective antibacterial drugs. In our research, we found that one anti-S. aureus substance is actinomycin D, originating from Streptomyces parvulus (S. parvulus); then, we further focused on the anti-S. aureus ability and the omics profile of S. aureus in response to actinomycin D. The results revealed that actinomycin D had a significant inhibitory activity on S. aureus with a minimum inhibitory concentration (MIC) of 2 μg/mL and a minimum bactericidal concentration (MBC) of 64 μg/mL. Bacterial reactive oxygen species (ROS) increased 3.5-fold upon treatment with actinomycin D, as was measured with the oxidation-sensitive fluorescent probe DCFH-DA, and H2O2 increased 3.5 times with treatment by actinomycin D. Proteomics and metabolomics, respectively, identified differentially expressed proteins in control and treatment groups, and the co-mapped correlation network of proteomics and metabolomics annotated five major pathways that were potentially related to disrupting the energy metabolism and oxidative stress of S. aureus. All findings contributed to providing new insight into the mechanisms of the anti-S. aureus effects of actinomycin D originating from S. parvulus
    corecore