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ABSTRACT Predicting the future trajectories of multiple pedestrians in certain scenes has become a key 

task for ensuring that autonomous vehicles, socially interactive robots and other autonomous mobile plat-

forms can navigate safely. The social interactions between people and the multimodal nature of pedestrian 

movement make pedestrian trajectory prediction a challenging task. In this paper, the problem is solved using 

a generative adversarial network (GAN) and a graph attention network (GAT) based on the spatiotemporal 

interaction information about pedestrians. Our method, STI-GAN, is based on an end-to-end GAN model 

that simulates the pedestrian distribution to capture the uncertainty of the predicted paths and generate more 

reasonable future trajectories. The complex interactions between people are modeled by a GAT, and spatio-

temporal interaction information is used to improve the performance of trajectory prediction. We verify the 

robustness and improvement of our framework by evaluating its results on various datasets and comparing 

them with the results of several existing baselines. Compared with the existing pedestrian trajectory predic-

tion methods, our method reduces the average displacement error (ADE) and final displacement error (FDE) 

by 21.9% and 23.8% respectively. 

INDEX TERMS Pedestrian trajectory prediction, Graph attention mechanism, Generative adversarial net-

works, Spatiotemporal 

I. INTRODUCTION  

Because of its importance in video monitoring [1], planning 

and control of automatic driving [2], and robot navigation [3], 

pedestrian trajectory prediction has long been a popular focus 

of research in the field of computer vision. However, the pre-

diction of pedestrian trajectories in a congested environment 

still presents many challenges, such as modeling the interac-

tions between pedestrians and the surrounding environment, 

pedestrian trajectory uncertainty, and the capture of pedestrian 

intentions. 

Due to the widespread application of machine learning and 

especially the rapid development of deep learning in recent 

years, researchers have mainly addressed the above challenges 

through related methods based on recurrent neural networks 

(RNNs), which serve as the background for our research. Zhu 

et al. [4] proposed an efficient method of describing interper-

sonal interactions through a topological star structure by 

observing all pedestrian trajectories and extracting a compre-

hensive description; however, this method ignores the impact 

of the surrounding environment on people. Haddad et al. [5] 

used spatiotemporal graphs to capture both the temporal and 

spatial correlations of pedestrian predictions and considered 

physical cues in a scene and the interactions between pedestri-

ans, thereby improving the performance of trajectory predic-

tion. In addition, Liang et al. [6] and Liu et al. [7] considered 

pedestrian-scene and pedestrian-object relationships simulta-

neously and incorporated pedestrian intentions to model future 

paths and predict human activities and locations. However, 

their work ignored the multimodal nature of the prediction of 

future pedestrian trajectories. As shown in Figure 1, due to the 

uncertainty of the future trajectories of pedestrians, compared 

with a multimodal trajectory prediction model, a unimodal tra-

jectory prediction model suffers from larger errors in predict-

ing the future trajectory distribution. 
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FIGURE1.  Different generative models generate different path errors when considering pedestrians walking towards each other. As shown in Fig.1(a), 
when a multimodal trajectory prediction model is used to predict a target pedestrian's trajectory, the pedestrian may go straight, turn left or turn right 
with a certain probability. This approach enables the prediction of a trajectory that is closer to the real trajectory (red trajectory) and has a smaller 
trajectory forecasting error. By contrast, as shown in Fig.1(b), when a unimodal trajectory prediction model is used for trajectory prediction, there may 
be a large error between the predicted and real trajectories of the target pedestrian. In the illustrated case, the average distance between the future 
trajectory of the target pedestrian (blue dashed line) and the real trajectory (red solid line) is relatively large. 

In contrast, Gupta et al. [8] and Amirian et al. [9] used a 

generative adversarial network (GAN) structure to model all 

pedestrian trajectories in a scene. These models fully consider 

the multimodal properties of the global scene and the trajecto-

ries, but they do not address the issue of capturing pedestrian 

interaction information. By comparing the global pooling and 

attention pooling approaches used in these two models, recent 

research [10] has shown that using a graph attention network 

(GAT) to capture pedestrian interaction information can im-

prove the predictive performance of pedestrian interaction 

models. 

To overcome the limitations of previous work, we propose 

a spatiotemporal interaction graph attention GAN (STI-GAN) 

model to learn the multimodal properties of the trajectories to 

be predicted. First, we use a graph attention network to model 

the social interactions of pedestrians and assign a different at-

tention weight to each neighbor to identify neighbors of higher 

importance. Unlike other pooling mechanisms, the GAT al-

lows all pedestrians in the scene to interact. Second, we imple-

ment a graph attention model based on spatiotemporal charac-

teristics in combination with a GAN structure to generate in-

terpretable multimodal paths in the form of end-to-end se-

quences and use the GAN discriminator to compare the gen-

erated paths with the real trajectories to determine how realis-

tically the generated trajectories are. We present an experi-

mental error analysis conducted on two publicly available 

real-scene pedestrian trajectory prediction datasets, and the ex-

perimental results prove the effectiveness of our proposed 

model. 

Contributions: 

1) Based on spatiotemporal information, a graph atten-

tion mechanism is extended to a GAN model to gen-

erate more accurate and interpretable multimodal path 

distributions. 

2) Our model incorporates temporal and spatial infor-

mation about social interactions to predict the future 

path of each pedestrian. 

3) We propose an improved feature extraction method to 

encode the social interactions between pedestrians. 

II. RELATED WORK 

Our work focuses on pedestrian trajectory prediction. In the 

past few decades, much research has focused on traditional 

methods of predicting the future trajectories of pedestrians by 

relying on handcrafted functions [11]-[14]. Recently, however, 

data-driven deep learning methods have enabled great pro-

gress in this context. In this section, we discuss the existing 

work on RNN-related sequence prediction, graph attention 

network, and GAN models. 

A. RECURRENT NEURAL NETWORKS (RNNS) FOR 

SEQUENCE PREDICTION 

Pedestrian trajectory prediction is a typical sequence problem 

in which historical trajectory information is used to predict 

future trajectories. RNNs, such as long short-term memory 

(LSTM) networks [15] and gated recurrent unit (GRU) netwo-

rks [16], are often used to process such sequence problems. In 

recent years, as a variant of RNNs, LSTM networks in particu- 

lar have been widely used in pedestrian trajectory prediction 

[8], [17]-[19]. Alahi et al. [17] first proposed a "social pooling 

layer", which allows nearest-neighbor pedestrians to share hi- 

dden states, to solve interactive problems. Xue et al. [18] used 

three different LSTM networks to capture pedestrian, social, 

and scene size information separately and innovatively introd- 

uced factors representing the influence of the scene layout on 

pedestrian behavior to improve the ability to predict pedestrian 

trajectories. Gupta et al. [8] first introduced a GAN for 

generating multiple possible future paths for pedestrians and 

used a global pooling layer to accelerate the calculations. 

Zhang et al. [19] proposed an LSTM-based data-driven state 

refinement module, which activates the current intentions of 

neighbors and jointly iteratively refines the current states of all 

pedestrians in a crowd through a message passing mechanism. 

B. GRAPH ATTENTION NETWORKS (GATS) 

Recently, graph neural networks (GNNs) have been widely 

used in various fields, including computer vision [20], [21], 

recommendation systems [22], transportation networks [23], 

[24], and even materials chemistry [25]. The reason they are 
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FIGURE 2.  Our proposed spatiotemporal-attention-based multimodal network architecture. The network structure is based on a GAN model and consists 
of three key components: a generator (G), a graph attention model (see Figure 5), and a discriminator (D). The generator uses an attention network and 
two LSTM modules to model the spatiotemporal correlations of interacting pedestrians and realize the fusion of spatiotemporal information.

so widely used is that the graph structure can provide an ex-

plicit high-level representation of the environment. Networks 

incorporating a graph attention mechanism (graph attention 

networks, GATs) have also been developed based on GNNs 

[26]. In a GAT, different attention weights are assigned to diff- 

erent neighbors when aggregating feature information. Notab- 

ly, the problem of pedestrian trajectory prediction has both 

temporal and spatial characteristics because of the changes in 

pedestrian movement over time and the complex interactions 

among different pedestrians. Accordingly, Haddad et al. [5] 

proposed an attention model based on spatiotemporal graphs 

that can consider the influence of surrounding pedestrians on 

the target pedestrians in both time and space. 

In our work, we use a spatiotemporal graph model [5] and 

a GAT model to jointly model such complex interaction infor-

mation. In each time step, we represent the interactions be-

tween pedestrians in the form of a graph, in which the pedes-

trians in a crowded scene correspond to the nodes of the graph 

and the interactions between pedestrians are described by the 

edges of the graph. We also assign different attention weights 

to different neighboring pedestrians. 

C. GENERATIVE ADVERSARIAL NETWORKS (GANS) 

The prediction of future pedestrian trajectories is a multimodal 

generation problem. Because of the capabilities of GANs in 

generating multimodal samples, a GAN model is suitable for 

solving this problem. GAN models are widely used in image 

translation [27], [28] and data enhancement [29]-[31] and have 

enabled remarkable breakthroughs in those areas. The struc-

ture of a GAN consists of a generator and a discriminator. 

Gupta et al. [8] introduced a GAN for solving the multimodal 

trajectory representation problem. However, the global pool-

ing method adopted in this model uses a uniform weight for 

all surrounding pedestrians; thus, it can’t distinguish the dif-

ferent effects exerted on a target pedestrian by pedestrians at 

different distances and traveling at different speeds. Sadeghian 

et al. [32] improved this model by adding an attention mecha-

nism. This improved model can assign different soft attention 

distribution weights to the surrounding pedestrians and the 

static environment, helping the model learn the interaction in-

formation of different agents and extract the most important 

information from the neighbors. In addition, Amirian et al. [9]  

used InfoGAN [33] to perform unsupervised learning based 

on data with potential categories. For the pedestrian prediction 

problem, our work introduces a spatiotemporal interactive en-

coder based on GAT that is introduced into GAN to model 

complex interactive behaviors in both time and space, thereby 

further improving the performance of trajectory prediction. 

 
III. OUR METHOD 

A. PROBLEM DEFINITION 

In a scene with changing background, pedestrian position in-

formation can be obtained by an accurate target detection al-

gorithm and be used as model input to predict the future tra-

jectory of pedestrians. In our article, the pedestrian position is 

given in the dataset, and we address the prediction of the future 

trajectories of all pedestrians based on given pedestrian trajec-

tories in a crowded scene. Our goal is to predict the pedestrian 

trajectories in future time steps t=Tobs+1,…,Tpred based on the 

observed trajectories X=X1, X2,…, XN of the N pedestrians in 

the scene in previous time steps t=1,…,Tobs. The real trajectory 

points of pedestrian i at time t are denoted by Xi
t=(xi

t , y
i
t) , and 

similarly, predicted future trajectory points are denoted by  

Ŷi

 t
=(x̂i 

t
, ŷ

i

t). 

B. OVERALL MODEL 

This paper proposes a new pedestrian trajectory prediction 

method that can accurately predict pedestrian trajectories by 

comprehensively considering each pedestrian's state, move-

ment history, and interactions with surrounding pedestrians. 

The network structure is shown in Figure 2. The model in-

cludes two main network components: a generator and a dis-

criminator. The generator includes three key parts: a spatio-

temporal feature coding module, a GAT module, and a de-

coder module. 

First, the spatiotemporal feature coding module takes the 

historical trajectory of each pedestrian as input for feature cod-

ing and uses a combination of LSTM and GAT structures to 

learn the most important information about the spatiotemporal 

interactions between pedestrians for generating future trajec-

tories. The learned features are then passed to the next module. 

The GAT module estimates the different levels of importance 
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of the surrounding pedestrians with respect to the target pedes-

trian and learns the interactions between pedestrians. Subse-

quently, the decoder module takes the spatiotemporal interac-

tion features along with noise as input and generates a series 

of reasonable future trajectories for each pedestrian. Finally, 

the LSTM-based discriminator compares the generated trajec-

tories with the real trajectories and determines the probability 

that each generated trajectory is a real trajectory. The discrim-

inator is mainly used to improve the predictive performance of 

the generator model, forcing the generator to generate more 

realistic samples. 

C. TRAJECTORY FEATURE EXTRACTOR 

The trajectory feature extraction module mainly uses an 

LSTM structure to extract feature representations of the ob-

served pedestrian trajectories. We extract the nodal features of 

all pedestrians' past trajectories and embed the relative dis-

placement of each pedestrian into a higher-dimensional fixed 

vector ei
t through a multilayer perceptron (MLP): 

ei
t=MLP(Xi

t
,We)                             (1) 

where We  represents the embedding weight. Then, we use 

LSTM to capture the time dependence between all states of 

the pedestrian, for which ei
t is used as the input to the encoder 

LSTM unit at time t for pedestrian 𝑖. We denote this LSTM 

as V-LSTM: 

vi
t=V-LSTM(vi

t-1,ei
t;Wv)                     (2) 

 

where vi
t is the hidden state of the V-LSTM unit at time step t 

and Wv  is the weight of the V-LSTM unit, which is shared 

among all pedestrians in the scene. 

D. GAT ENCODER 

GNNs are an important supplement to traditional deep learn-

ing methods because they can handle irregularly structured ob-

jects well. In this work, we extend a spatiotemporal interaction 

encoder based on a graph attention mechanism to a GAN. This 

new model can simulate the social interactions between all pe- 

destrians in a scene from the two perspectives of spatial mo-

tion patterns and temporal correlations. 

GAT and Pedestrian Construction. The "pooling" func-

tion and the "attention mechanism" mentioned in [17]-[19] 

cannot be used to effectively model irregularly structured ob-

jects. To model objects with irregular structures, we aggregate 

the information of the surrounding neighbors by adding graph 

attention and assigning different importance to different sur-

rounding nodes. When calculating the spatial interaction be-

tween pedestrians in each time step, the adjacent nodes are 

considered mainly by introducing the GAT network, and the 

corresponding hidden information of each target pedestrian 

node is calculated and obtained. GAT introduces the self-at-

tention mechanism to calculate the features of each neighbor 

node and then connects the features to obtain the influence of 

different neighbor nodes on the hidden state of each target pe-

destrian node. The GAT network is implemented by stacking 

multiple graph attention layers. Figure 3 shows a single graph 

FIGURE 3.  Single graph attention layer. In the graph attention layer, K 
multi attention mechanisms are applied to calculate the hidden state of 
nodes, and finally, their features are connected to obtain the importance 
of different neighbor nodes. 

 
FIGURE 4. Structure diagram of pedestrian space-time interaction infor-
mation in adjacent time steps. At each time step, the graphic relationship 
between pedestrians is represented by points and spatial edges, pedes-
trians are regarded as nodes, and the spatial relationship between pedes-
trians is represented by black solid lines. The blue directed downward 
dashed lines indicate temporal edges linking the same pedestrian node 
over adjacent time steps. 

attention layer. The input characteristic of the target node is 

1 2{ , ,..., }, F
Nh h h h h R=  where N and F represent the number

 
of nodes and characteristic dimension, respectively, and the 

output characteristics of nodes are
' ' ' ' ' '

1 2{ , ,..., }, F
Nh h h h h R=  . 

At present, our method uses GAT to model the spatial rela-

tionship between pedestrians in the same time step and uses 

another LSTM to capture the temporal correlation of pedestri-

ans. Figure 4 shows the graphic structure of humans in two 

consecutive time steps, which mainly includes three key parts: 

nodes, space edges (black solid line) and time edges (blue dot-

ted line). Among them, the nodes in the graph structure repre-

sent the pedestrians of each time step in the scene, the black 

solid line represents the spatial edge of the spatial social rela-

tionship between pedestrians, and the blue dotted line repre-

sents the temporal edge of the temporal correlation of the same 

pedestrian in the adjacent time steps. 

Spatiotemporal interactive encoder based on GAT. To 

model the pedestrian interaction network in the crowded scene, 

we introduce a spatiotemporal interaction coder based on 

graph attention, which can model the social interaction of all 

pedestrians in the scene. Figure 5 describes in detail the spatio- 

temporal interaction input characteristics of a single node  
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FIGURE 5.  The spatiotemporal node characteristics of pedestrians 𝒊 
based on the graph attention mechanism. The two red dashed lines indi-
cate the spatial interaction between pedestrians 𝒋𝟏and 𝒋𝟐 to target pedes-
trian 𝒊 at time 𝒕. The green part in front of pedestrian 𝒋𝟏 and pedestrian 𝒋𝟐 

indicate the temporal influence of the surrounding pedestrians on the 
continuity of target pedestrian 𝒊 from time 𝒕 to time 𝒕 + 𝟏. The LSTM and 
GAT networks are used to capture the different spatial interactions of the 
surrounding pedestrians on the target pedestrian, and then another 
LSTM is used to capture the influence of the historical trajectory of other 
neighbors on the target pedestrian 𝒊, that is, the temporal correlation of 

the motion interaction. Finally, the output 𝒈𝒊
𝒕 of the encoder network 

model is obtained as shown in formula 5. 

based on graph attention. For pedestrian i, we use the pedes-

trian space encoding vi
t and vj

t (t=1,…,Tobs) as the input to the 

softmax layer, and αi,j
t  as is used to scale the influence of the 

hidden state of each surrounding pedestrian \{ }j N i on the 

target pedestrian. Finally, the influence of all the surrounding 

pedestrians is summed to form a graph and the attention layer 

output is g
j
t. Wg and Wu are parameters corresponding to the 

pedestrian. In these formulas, a denotes the shared attention 

mechanism, and φ is a linear embedding function: 

 

ui,j
t =a(Wuvi

t,Wuvj
t)                          (3) 

αi,j
t =

exp(ui,j
t )

∑ exp(ui,k
t )k∈N\{i}

                           (4) 

g
j
t= ∑ φ(αi,j

t .vj
t;Wg)j∈N\{i}                       (5) 

[10] used the hidden state for the target pedestrian as the 

input to the GAT. In contrast, we not only use the current his-

torical trajectory of the target pedestrian and the spatial inter-

actions between pedestrians in the same time step but also in-

corporate the historical trajectories of the other pedestrians to 

jointly predict their future paths. 

Once the spatial interaction influence g
j
t has been obtained 

for each pedestrian in the crowded scene, the temporal inter-

action influence si
t on the movement of each pedestrian and the 

representations of the movement histories of the other pedes-

trians are obtained by means of another LSTM module, and 

we denote this LSTM module as S-LSTM. Then, we incorpo-

rate the spatial interaction influence for trajectory prediction, 

where || denotes a series connection and Ws denotes a param-

eterized shared linear transformation: 

si
t=S-LSTM(si

t-1,g
i
t;Ws)                         (6) 

 mi
t=(MLPv(vi

Tobs)||MLPs(si
Tobs))                         (7) 

E. LONG SHORT-TERM MEMORY (LSTM)-BASED GAN 

As stated in the introduction, pedestrian trajectory prediction 

can be characterized as a multimodal problem. Accordingly, 

an LSTM-based GAN can be used to generate multiple rea-

sonable trajectories. We adopt this approach to capture the 

uncertainty of the possible future paths. 

In general, a GAN is composed of two models: a genera-

tive model and a discriminative model. The goal of the gen-

erative model is to deceive the discriminative model by gen-

erating samples that are as realistic as possible, while the 

goal of the discriminative model is to accurately distinguish 

the generated samples from the real samples. This “two-

model game” ultimately enables the generative model to 

generate fake samples that mix the spurious with the genuine. 

In our model, a variety of reasonable trajectory samples are 

learned and predicted by a GAN. 

Generator (G): The generator (G) obtains and encodes 

the spatiotemporal interaction information of trajectories 

through an LSTM-based spatiotemporal encoder and then 

uses an LSTM-based decoder for feature vector decoding 

and trajectory generation. 

As shown in Figure 2, the encoder obtains the spatiotem-

poral interaction encoding vector mi
t for the target pedestrian 

through formula 7. Following [8], the decoder takes a noise 

vector z sampled from a multivariate normal distribution in 

combination with the encoding vector representing the spa-

tiotemporal history of a pedestrian as its input. Next, we use 

the LSTM method to generate the future trajectory of the pe-

destrian across multiple time steps Ŷi

t
(t=Tobs+1,…,Tpred). We 

term this LSTM as G-LSTM. The corresponding LSTM 

model is referred to as G-LSTM. The pedestrian's future tra-

jectory can be expressed as follows: 

Ŷi

t
=MLPd1(G-LSTM((mi

t||z),ei

Tobs;Wd),Wd1)        (8) 
 

where Wd  and Wd1  are shared among all pedestrians in the 

scene and ei

Tobs  is obtained from formula 2. 

Discriminator (D): As shown in Figure 2, we use a sepa-

rate encoder to learn the rules of social interaction and iden-

tify unreasonable trajectories as false. In detail, any ground-

truth or generated trajectory sample may be used as the input 

to the discriminator, and an MLP is applied to the last hidden 

state of the encoder to obtain a classification score. Thus, the 

path is divided into a real path and a false path. 

Losses: We use two different loss functions to train the 

network: Ladv and L2. Between them, Ladv represents an 

adversarial loss, whereas L2 is a diversity loss function ap-

plied in the trajectory generation part of the model to encour-

age the network to generate k different samples. The total 

losses are as follows: 

Ladv=E[log D (Xi,Yi)]+E [log (1-D(Xi,Ŷi))]           (9) 

 

   L2=min
k

‖ Yi-Ŷi

(k)
‖

2
                          (10) 
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where Yi 
represents the ground-truth trajectory of pedestrian 

i. Ŷi 
denotes the future trajectory Ŷi of pedestrian i generated 

by our model, k is a hyperparameter, and D denotes the dis-

criminator. Finally, we combine the losses to find the best 

discriminator D*and generator G* and choose a weight λ1 as 

the final hyperparameter for combining these two loss func-

tions: 

    G*,D*=argmin
G

argmax
D

[Ladv+λ1L2]            (11) 
 
F.  IMPLEMENTATION DETAILS 

In our model, an LSTM network structure is used as the RNN 

structure for both the generator and the discriminator. The 

numbers of hidden state dimensions of the generator's LSTM 

encoder and decoder are both 32 and that of the discrimina-

tor's LSTM encoder is 64. The input coordinates are encoded 

as 16-dimensional vectors and embedded into the LSTM part 

of the spatial encoder. During network training, only the 

mean square error is used for the first 250 cycles, and then, 

the last 250 cycles of adversarial training are conducted us-

ing both the cross-entropy loss and the mean square error. 

Through this training method, the generator can be encour-

aged to produce more reasonable results before the discrim-

inator performs comparisons with the ground truth, thereby 

reducing the number of experimental iterations. In formula 8, 

we set λ1to 1. During training, the Adam optimizer is used to 

train the generator and discriminator. The batch size is set to 

64, the number of iterations is 500, and the initial learning 

rate is 0.01. 

 
IV.  EXPERIMENTS 

In this section, the two datasets used in our experiments and 

the two types of prediction errors reported to evaluate the re-

sults are introduced. Then, we compare the proposed method 

with four other models. Quantitative and qualitative results, 

including results obtained by analyzing the validity of our 

model and visualizing the differences between trajectories, 

are shown. 

A. DATASETS 

Experiments were conducted on two public pedestrian tra-

jectory prediction datasets: ETH [34] and UCY [35]. These 

two public datasets include four scenarios and five subsets: 

the ETH dataset includes two scenarios, namely, ETH and 

HOTEL, and UCY is divided into three subsets, namely, 

ZARA1, ZARA2, and UCY. These datasets contain 1536 pe-

destrians, complex social scenes, and information about the 

interactions between pedestrians. To make full use of the da-

tasets when training the model, the "leave one out" method 

was used; i.e., the model was trained on four subsets and 

tested on the remaining subset. For model training, we took 

the first 3.2 seconds of each trajectory as the observed trajec-

tory and predicted the trajectory over the next 3.2 seconds or 

4.8 seconds. Based on the experience of the authors of S-

LSTM, the data over the next 8 and 12 time steps were 

predicted by observing the data from the first 8 times steps, 

with a frame rate of 0.4 seconds. 

 

B. BASELINES AND METRICS 

Baselines. To test the effectiveness of the proposed model, 

we compared its performance with the performance of four 

other advanced models: 

•  Linear: The model is a linear regressor that estimates 

the linear parameters by minimizing the least square er-

ror. 

• LSTM: The conventional LSTM model does not in- 

clude a pooling mechanism, and all trajectories are con-

sidered independent of each other [15]. 

•   S-LSTM: This model was proposed by Alahi et al. [17]. 

LSTM model is used to model each pedestrian. The 

hidden states for different pedestrians are shared be-

tween the LSTM models through a pooling mechanism. 

The pedestrian trajectories are predicted by modeling 

the interactions between different pedestrians.  

•  SGAN: This model is based on an LSTM-based codec 

framework that uses a GAN for training and captures 

the multimodal distribution of the future trajectories [8]. 

•  SoPhie: This model was proposed by Sadeghian et al. 

[32]. An attention-mechanism-based GAN codec 

model is used to model social interactions, and a phys-

ical attention mechanism is used to achieve interpreta-

ble predictions. 

••  STI-GAN: This is the spatiotemporal multimodal GAN 

model proposed in this work. Following parameter set-

tings similar to those in [8], the complete configuration 

of our model is denoted by STI-GAN- KV-N, where the 

value of K represents the hyperparameter used in cal-

culating the diversity loss and the value of N represents 

the number of rounds of sampling during testing. To 

test the effectiveness of the model, we designed four 

model variants as different controls, which are repre-

sented by STI-GAN-1V-1, STI-GAN-1V-20, STI-

GAN-20V-20, and SI-GAN. STI-GAN-20V-20 is our 

full model, and SI-GAN is the model obtained by re-

moving the time-dependent module from STI-GAN-

20V-20. STI-GAN-1V-1 means that there is no loss of 

diversity and the number of sampling rounds is only 

once; the only difference between the variant of STI-

GAN-1V-20 and the complete model STI-GAN-20V-

20 is the calculation of diversity loss. 

Evaluation Metrics.  

1)  Average displacement error (ADE): L2 loss between 

the predicted trajectory and the real trajectory on the 

ground averaged over all time steps i=(1,…,n) in the 

scene. 

2)   Final displacement error (FDE): The distance between 

the predicted final destination and the real final desti-

nation at the end of the predicted trajectory. Compared 
with the ADE, the FDE places more emphasis on the 

accuracy of destination prediction. 
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TABLE I. For a given trajectory over 8 times steps, the quantitative results predicted by all benchmark models over the next 8 and 12 time steps on the
public datasets ETH and UCY. STI-GAN is always superior to the baseline models due to the combination of pedestrian spatiotemporal information
and the graph attention mechanism in the model.

C.  QUANTITATIVE RESULTS 

1)  COMPARISON WITH EXISTING WORKS.  

In Table 1, our proposed model is compared with other ex-

isting models. We can see that the performance of the 

LSTM and S-LSTM is worse than that of SGAN and our 

model because GAN can effectively capture the multi-

modal path distribution. Besides, the proposed adversarial 

method based on pedestrian spatiotemporal information 

and a graph attention mechanism is significantly better 

than the previous adversarial methods [8] and [32], show-

ing that the graph attention mechanism and the considera-

tion of the spatiotemporal characteristics of pedestrian in-

teractions in the model can improve its prediction perfor-

mance. We also observe that SoPhie is different from other 

methods. It uses not only the historical paths of all agents 

in the scene but also scenes context information to predict 

the pedestrian paths. This method performs well on the 

ETH and ZARA2 datasets, further demonstrating the im-

portance of considering the static scenario context for pre-

diction. Notably, when the prediction time step is 12, in the 

Hotel scenario, linear performs best in both ADE and FDE. 

This is due to less pedestrian interaction and more linear 

trajectories in the Hotel scene. As shown in Table 1, the 

STI-GAN-20V-20 model has the smallest average error 

among all of the compared models. Compared with the 

SGAN model, its average ADEs over the next 8 and 12 

time steps are reduced by 21.9% and 9.4%, respectively, 

and the corresponding FDEs are reduced by 23.8% and 

22.9%. 

2)  ABLATION STUDY 

Analyses were performed to evaluate the effects of the dif-

ferent components of the proposed model, including the 

diversity loss, the graph attention mechanism, and the spa-

tiotemporal information module, as well as an evaluation  

of the spatial consumption. The quantitative results of dif-

ferent model variables are shown in the following three ta-

bles. 

Evaluation of The Effect of The Diversity Loss. Due 

to the multimodal nature of the pedestrian movement, we 

generate multiple socially acceptable trajectories based on 

diversity loss [8]. Compared with STI-GAN-1V-1 and 

STI-GAN-1V-20, our final STI-GAN-20V-20 model can 

generate more reasonable predictions of future trajectories 

by means of diversity loss. The ADEs of the STI-GAN-

20V-20 model for prediction over 8 and 12 future time 

steps are reduced by 18.8% and 19.0%, respectively, and 

the corresponding FDEs are reduced by 8.6% and 14.6%. 

The results show that the diversity loss can encourage the 

model to produce different predicted trajectory samples, 

which is helpful for improving the trajectory prediction 

performance of the model. 

Evaluation of The Effect of The Spatiotemporal In-

teraction Module. To verify the effectiveness of consider-

ing spatiotemporal information, a network considering 

only the spatial interaction information of the crowd was 

also trained, that is, the SI-GAN model, which does not 

contain the time-dependent interaction module. As shown 

in Table 1, Compared with the model without the spatio-

temporal interaction module SI-GAN, our full method 

STI-GAN-20V-20 has an ADE and FDE that are reduced 

by 6.3% and 4.8%, respectively, when predicting the tra-

jectories over the next 8 times steps. This is because the 

spatiotemporal interaction module allows the model to 

consider not only the spatial interactions between pedestri-

ans but also the influence of the continuous movement his-

tories of the other pedestrians on the target pedestrian. The 

results prove that considering the spatiotemporal infor-

mation of pedestrian interactions can help the model pred- 

Metric Dataset Linear LSTM S-LSTM SGAN SoPhie 
Ours (STI-GAN) 

1V-1 1V-20 20V-20 SI-GAN 

 

ADE 

 

ETH 

HOTEL 

UNIV 

ZARA1 

ZARA2 

0.84/1.33 

0.35/0.39 

0.56/0.82 

0.41/0.62 

0.53/0.77 

0.70/1.09 

0.55/0.86 

0.36/0.61 

0.25/0.41 

0.31/0.52 

0.73/1.09 

0.49/0.79 

0.41/0.67 

0.27/0.47 

0.33/0.56 

0.61/0.81 

0.48/0.72 

0.36/0.60 

0.21/0.34 

0.27/0.42 

—/0.70 

—/0.76 

—/0.54 

—/0.30 

—/0.38 

0.79/0.94 

0.39/0.82 

0.36/0.57 

0.30/0.45 

0.27/0.40 

0.73/0.85 

0.34/0.78 

0.34/0.53 

0.25/0.38 

0.22/0.34 

0.54/0.77 

0.28/0.70 

0.35/0.53 

0.21/0.33 

0.20/0.33 

0.57/0.71 

0.32/0.76 

0.35/0.56 

0.23/0.33 

0.21/0.34 

AVG  0.54/0.79 0.43/0.70 0.45/0.72 0.39/0.58 —/0.54 0.42/0.64 0.38/0.58 0.32/0.53 0.34/0.54 

FDE 

ETH 

HOTEL 

UNIV 

ZARA1 

ZARA2 

1.60/2.94 

0.60/0.72 

1.01/1.59 

0.74/1.21 

0.95/1.48 

1.45/2.41 

1.17/1.91 

0.77/1.31 

0.53/0.88 

0.65/1.11 

1.48/2.35 

1.01/1.76 

0.84/1.40 

0.56/1.00 

0.70/1.17 

1.22/1.52 

0.95/1.61 

0.75/1.26 

0.42/0.69 

0.54/0.84 

—/1.43 

—/1.67 

—/1.24 

—/0.63 

—/0.78 

1.53/1.81 

0.79/1.28 

0.73/1.23 

0.61/0.96 

0.53/0.87 

1.42/1.62 

0.69/1.13 

0.69/1.15 

0.50/0.83 

0.43/0.74 

1.04/1.53 

0.54/0.73 

0.74/1.20 

0.41/0.66 

0.41/0.66 

1.10/1.44 

0.61/0.84 

0.73/1.21 

0.45/0.67 

0.42/0.68 

AVG  0.98/1.59 0.91/1.52 0.91/1.54 0.78/1.18 —/1.15 0.84/1.23 0.75/1.10 0.63/0.96 0.66/0.97 
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TABLE 2. Inference time (in seconds) comparison with S-LSTM and SGAN. 
All methods are benchmarked on the same dataset and one Tesla V100 
GPU. The inference time is the average of several single inference steps. 

 S-LSTM SGAN SI-GAN STI-GAN 

8 1.153 0.084 0.097  0.103 

12 1.327 0.091  0.104  0.105 

AVG 1.240 0.088 0.101 0.104 

Speed-Up 14x 1x   1.15x    1.18x 

TABLE 3. Comparison of CUDA memory usage. All models (S-LSTM, 
SGAN, SI-GAN, and STI-GAN) are benchmarked on the same dataset. 

 S-LSTM SGAN SI-GAN STI-GAN 

Training 1059 2065 1527 1860 

Validation 485 1051 600 630 

ict more reasonable paths. 

Evaluation of The Effect of The GAT Module. To eval-

uate the robustness of the graph attention mechanism, we 

compared two models: the SI-GAN model and the SGAN 

model. SI-GAN mainly uses a graph attention mechanism for 

modeling pedestrian interactions, while SGAN uses a pool-

ing mechanism. From Table 1, we can see that the SI-GAN 

model performs slightly better than the SGAN model be-

cause the graph attention mechanism (GAT) allows the 

model to capture the most important pedestrian interaction 

information more accurately than the pooling mechanism 

does. 

Evaluation of The Effect of The GAN Structure. To 

evaluate the effectiveness of the GAN discriminator, two 

models with different generation methods were compared: 

the S-LSTM model and the SI-GAN model. Between them, 

only the SI-GAN model relies on adversarial training to 

cause the output of the pedestrian trajectory prediction model, 

i.e., the generated distribution, to converge to the real distri-

bution. Compared with those of the baseline S-LSTM model, 

the ADE and FDE of the SI-GAN model are reduced by 32.4% 

and 33.3%, respectively, when predicting the trajectories 

over the next 8 times steps, and they are reduced by 37.9% 

and 58.8%, respectively, when predicting the trajectories 

over the next 12 times steps. This is because our model uses 

a GAN structure to conduct adversarial training to predict 

reasonable future pedestrian trajectories. 

Inference Speed and Spatial Consumption. The speed of 

pedestrian trajectory prediction is very important, for exam-

ple, in practical applications such as self-driving cars and so 

on. The more pedestrians there are in the real scene, the more 

complex the graphic structure between pedestrians, and the 

more memory and computation required. On the public real 

datasets UCY and ETH, the maximum number of pedestrians 

per frame is 65, and the model can still accurately predict the 

future trajectory. Therefore, the number of pedestrians has 

little effect on the accuracy of trajectory prediction, but it will 

increase the amount of calculation.  

   We compared our two methods with the baseline model S-

LSTM and SGAN. We refer to our complete model STI-

GAN-20V-20 as STI-GAN for simplicity. As shown in Table 

2, in terms of inference speed, the STI-GAN is slower than 

SGAN. This is because our GAT scheme is more time-con-

suming than SGAN's pooling module. Table 3 lists out the 

CUDA memory comparisons between our model and pub-

licly available models which we could bench-mark against. 

The memory usage of SGAN is twice as high as that of S-

LSTM during training, which indicates that adversarial train-

ing can significantly increase memory usage. We compare 

SI-GAN and STI-GAN indicate that considering the conti-

nuity of time interaction does not affect the speed of infer-

ence of the model, but increases the memory occupation. 

 

D.  QUALITATIVE RESULTS 

In this section, we qualitatively evaluate the output predic-

tions of SGAN, Sophie, and our complete model under four 

different real scenarios on the ZARA dataset. By consider-

ing spatiotemporal interaction information and a graph atten-

tion mechanism in a GAN architecture, STI-GAN can better 

model the relationships between pedestrians, allowing it to 

more accurately predict the trajectories they will follow to 

avoid collisions. When pedestrians walk side by side or fol-

low each other, our model can make correct pre-dictions re-

sults. In addition, when pedestrians are walking in opposite 
directions, our model can better model the relationships be-

tween them to deal with such situations. 

Pedestrians Walking Side by Side. On the road, it is 

common for pedestrians to walk side by side to the same des-

tination while maintaining a certain distance between them. 

As shown in Fig. 6(a), a pair of friends walking side by side 

in the same direction and at the same speed. SGAN and So-

Phie pay too much attention to short-term social information 

in the pooling process; consequently, their performance is 

poor. Because of the spatiotemporal interaction mechanism 

used in STI-GAN, however, the trajectories predicted by the  

STI-GAN model are roughly consistent with the real trajec-

tories. 

Person Following. On a crowded road, when a target pe-

destrian is following the pedestrian in front of him or her, he 

or she will usually keep a certain distance from the pedestrian 

ahead and walk in the same direction and at the same speed 

as that pedestrian. He or she may also deflect in a certain 

direction and walk forward with the pedestrian ahead. In Fig. 

6(b), the trajectories of a pair of pedestrians following an-

other pair of pedestrians. In this situation, the target pedes-

trian needs to pay attention to the speed and direction of the 

pedestrian in front and on the left and right sides at the same 

time. SGAN uses the maximum pooling mechanism, which 

only focuses on the most important features that affect pe-

destrian trajectories, so it generates large error prediction tra-

jectories. STI-GAN uses its spatiotemporal interaction 

mechanism to aggregate and capture global pedestrian infor-

mation to consider the influence of spatial relations and  
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FIGURE 6. Trajectory prediction results of SGAN, SoPhie, and our proposed model in four different scenarios. Each column of images presents the 
trajectories predicted by the three prediction models in the same scene, i.e., the socially acceptable trajectory outputs of the different models. The blue 
solid lines in each image represent the historically observed trajectories, the red solid lines are the real future trajectories, and the green dotted lines 
are the predicted trajectories. In addition, we show some cases of prediction failure. 

historical trajectories of other pedestrians on the target pe-

destrian. Thus, the trajectories predicted by STI-GAN are 

closer to the real trajectories. 

Group Avoidance. When people are facing each other in 

a crowded scene, pedestrians usually adjust their direction 

and speed in time to avoid the collision between two groups 

of pedestrians. As shown in Fig. 6 (c), the two groups of pe-

destrians are facing each other, and the direction should be  

adjusted in time to avoid the collision between pedestrians. 

In this crowded environment, the key to accurate modeling 

is to capture the information about the interactions of the sur-

rounding pedestrians. Among them, the predicted trajectory 

of SGAN is quite different from the real trajectory on the 

ground. SoPhie does use an attention mechanism to extract 

the most important trajectory information from the surround-

ing pedestrians, but it is still insensitive to the unstructured 

features of the pedestrian interactions. By virtue of the graph 

attention mechanism of STI-GAN, it can capture the changes 

in other people's intentions more successfully and learn more 

reliable unstructured object feature representations; and 

avoid collision successfully. 

Failure Scenario. Another common scenario is that pe-

destrians suddenly change direction during the process of 

moving forward. Fig. 6(d) shows a pair of friends who sud-

denly change their direction after passing a vehicle. In this 

case, the prediction results of neither the proposed model nor 

the baseline models are ideal. SGAN shows the worst perfor-

mance, while STI-GAN can better model complex pedes-

trian interactions by means of the graph attention mechanism 

and therefore still predicts trajectories that are closer to the 

real trajectories than SGAN does. 

 

V. CONCLUSION 

To model pedestrian motion patterns and accurately predict 

future pedestrian trajectories, this paper proposes a multi-

modal end-to-end trajectory prediction model that combines 

spatiotemporal interaction information based on a graph at-

tention mechanism with the multimodal characteristics of a 

GAN to predict trajectories that exhibit good rationality in 

terms of social interactions. Our spatiotemporal graph atten-

tion model can combine spatial and temporal information to 

rationally assign different weights to different pedestrians in 

order to better capture the complex interactions between pe-

destrians. In addition, our GAN can produce diverse samples 

that conform to social rules. Our proposed model was tested 

on two public video datasets. The experimental results show 

that compared with baseline methods, the new model com-

bining a spatiotemporal attention mechanism with a GAN 

can better capture the complex interactions between pedes-

trians to predict pedestrian trajectories in various real scenes, 

thereby improving the performance of pedestrian trajectory 

prediction. 

Our work focuses on the study of social interactions be-

tween pedestrians. In the future, we can jointly model the 

spatiotemporal social interactions between pedestrians and 

other pedestrians, pedestrians and vehicles as well as vehi-

cles and vehicles, and further improve the accuracy of trajec-

tory prediction through joint modeling. 
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