3 research outputs found
Thinning in black pine (Pinus nigra J.F.Arnold) forests: the economic sustainability of the wood-energy supply chain in a case study in Italy
In Italy, black pine has been largely used in reforestation projects in the past. Most of these reforestations are characterized by a high instability, vulnerability, and a limited resistance to atmospheric agents. In this situation, it is crucial to define silvicultural interventions able to increase the ecological stability of black pine stands and at the same time to guarantee the economic sustainability of the wood products obtained. Thinning in black pine forests can provide wood material for energy use. The main aim of the present study was to investigate the economic sustainability of a local wood-energy supply chain applying three different forest management options. The case study was Monte Morello forest, a degraded black pine forest located in Central Italy. The results show that the long-term economic sustainability of the wood-energy supply chain is ensured only when the use of bio-fuel is characterized by high energy efficiency. In addition, the results show that public contributions are fundamental to ensure that silvicultural interventions are realized with a positive economic balance and that to surmount this situation many loggings companies are organizing. Finally, the results highlighted the importance of the quantities of thermal energy sold to ensure the economic and environmental efficiency of the wood-energy supply chain
Hydraulic Efficiency of Green-Blue Flood Control Scenarios for Vegetated Rivers: 1D and 2D Unsteady Simulations
Flood hazard mitigation in urban areas crossed by vegetated flows can be achieved through two distinct approaches, based on structural and eco-friendly solutions, referred to as grey and green–blue engineering scenarios, respectively; this one is often based on best management practices (BMP) and low-impact developments (LID). In this study, the hydraulic efficiency of two green–blue scenarios in reducing flood hazards of an urban area crossed by a vegetated river located in Central Tuscany (Italy), named Morra Creek, were evaluated for a return period of 200 years, by analyzing the flooding outcomes of 1D and 2D unsteady hydraulic simulations. In the first scenario, the impact of a diffuse effect of flood peak reduction along Morra Creek was assessed by considering an overall real-scale growth of common reed beds. In the second scenario, riverine vegetation along Morra Creek was preserved, while flood hazard was mitigated using a single vegetated flood control area. This study demonstrates well the benefits of employing green–blue solutions for reducing flood hazards in vegetated rivers intersecting agro-forestry and urban areas while preserving their riverine ecosystems. It emerged that the first scenario is a valuable alternative to the more impacting second scenario, given the presence of flood control areas