29 research outputs found

    Surface Sediment Samples From Early Age of Seafloor Exploration Can Provide a Late 19th Century Baseline of the Marine Environment

    Get PDF
    Ocean-floor sediment samples collected up to 150 years ago represent an important historical archive to benchmark global changes in the seafloor environment, such as species' range shifts and pollution trends. Such benchmarking requires that the historical sediment samples represent the state of the environment atā€”or shortly before the time of collection. However, early oceanographic expeditions sampled the ocean floor using devices like the sounding tube or a dredge, which potentially disturb the sediment surface and recover a mix of Holocene (surface) and deeper, Pleistocene sediments. Here we use climate-sensitive microfossils as a fast biometric method to assess if historical seafloor samples contain a mixture of modern and glacial sediments. Our assessment is based on comparing the composition of planktonic foraminifera (PF) assemblages in historical samples with Holocene and Last Glacial Maximum (LGM) global reference datasets. We show that eight out of the nine historical samples contain PF assemblages more similar to the Holocene than to the LGM PF assemblages, but the comparisons are only significant when there is a high local species' temporal turnover (from the LGM to the Holocene). When analysing temporal turnover globally, we show that upwelling and temperate regions had greatest species turnover, which are areas where our methodology would be most diagnostic. Our results suggest that sediment samples from historical collections can provide a baseline of the state of marine ecosystems in the late nineteenth century, and thus be used to assess ocean global change trends

    Drivers of global preā€industrial patterns of species turnover in planktonic foraminifera

    Get PDF
    Anthropogenic climate change is altering global biogeographical patterns. However, it remains difficult to quantify how bioregions are changing because preā€industrial records of species distributions are rare. Marine microfossils, such as planktonic foraminifera, are preserved in seafloor sediments and allow the quantification of bioregions in the past. Using a recently compiled data set of preā€industrial species composition of planktonic foraminifera in 3802 worldwide seafloor sediments, we employed multivariate and statistical modelā€based approaches to study spatial turnover in order to 1) quantify planktonic foraminifera bioregions and 2) understand the environmental drivers of species turnover. Four latitudinally banded bioregions emerge from the global assemblage data. The polar and temperate bioregions are biā€hemispheric, supporting the idea that planktonic foraminifera species are not limited by dispersal. The equatorial bioregion shows complex longitudinal patterns and overlaps in sea surface temperature (SST) range with the tropical bioregion. Compositionalā€turnover models (Bayesian bootstrap generalised dissimilarity models) identify SST as the strongest driver of species turnover. The turnover rate is constant across most of the SST gradient, showing no SST threshold values with rapid shifts in species composition, but decelerates above 25Ā°C, suggesting SST is less predictive of species composition in warmer waters. Other environmental predictors affect species turnover nonā€linearly, and their importance differs across regions. In the Pacific ocean, net primary productivity below 500 mgC māˆ’2 dayāˆ’1 drives fast compositional change. Water depth values below 3000 m (which affect calcareous microfossil preservation) increasingly drive changes in species composition among death assemblages in the Pacific and Indian oceans. Together, our results suggest that the dynamics of planktonic foraminifera bioregions are expected to be highly responsive to climate change; however, at lower latitudes, environmental drivers other than SST may affect these dynamics.</jats:p

    BioDeepTime : a database of biodiversity time series for modern and fossil assemblages

    Get PDF
    We thank the Paleosynthesis Project and the Volkswagen Stiftung for funding that supported this project (Az 96 796). M.C.R. acknowledges the German Research Foundation (DFG) for funding through the Cluster of Excellence ā€˜The Ocean Floor ā€“ Earth's Uncharted Interfaceā€™ (EXC 2077, grant no. 390741603). E.E.S. acknowledges funding from Leverhulme Trust grant RPG-201170, the Leverhulme Prize and the National Science Research Council grant NE/V011405/1. Q.J.L. and L.N. acknowledge support from the Youth Innovation Promotion Association (2019310) and the Chinese Academy of Sciences (CAS-WX2021SF-0205). A.M.P. acknowledges funding from the Leverhulme Trust through research grant RPG-2019-402. M.D. acknowledges funding from Leverhulme Trust through the Leverhulme Centre for Anthropocene Biodiversity (RC-2018-021) and a research grant (RPG-2019-402), and the European Union (ERC coralINT, 101044975). L. H. L. acknowledges funding from the European Research Council (macroevolution.abc ERC grant no. 724324). K.H.P acknowledges funding from the National Science Foundation Graduate Research Fellowship Program (DGE-2139841). H.H.M.H. acknowledges support from Peter Buck Postdoc Fellowship, Smithsonian Institution. A.T. acknowledges funding from the Slovak Research and Development Agency (APVV 22-0523) and the Slovak Scientific Grant Agency (VEGA 02/0106/23).Motivation We have little understanding of how communities respond to varying magnitudes and rates of environmental perturbations across temporal scales. BioDeepTime harmonizes assemblage time series of presence and abundance data to help facilitate investigations of community dynamics across timescales and the response of communities to natural and anthropogenic stressors. BioDeepTime includes time series of terrestrial and aquatic assemblages of varying spatial and temporal grain and extent from the present-day to millions of years ago. Main Types of Variables Included BioDeepTime currently contains 7,437,847 taxon records from 10,062 assemblage time series, each with a minimum of 10 time steps. Age constraints, sampling method, environment and taxonomic scope are provided for each time series. Spatial Location and Grain The database includes 8752 unique sampling locations from freshwater, marine and terrestrial ecosystems. Spatial grain represented by individual samples varies from quadrats on the order of several cm2 to grid cells of ~100 km2. Time Period and Grain BioDeepTime in aggregate currently spans the last 451?million years, with the 10,062 modern and fossil assemblage time series ranging in extent from years to millions of years. The median extent of modern time series is 18.7?years and for fossil series is 54,872?years. Temporal grain, the time encompassed by individual samples, ranges from days to tens of thousands of years. Major Taxa and Level of Measurement The database contains information on 28,777 unique taxa with 4,769,789 records at the species level and another 271,218 records known to the genus level, including time series of benthic and planktonic foraminifera, coccolithophores, diatoms, ostracods, plants (pollen), radiolarians and other invertebrates and vertebrates. There are to date 7012 modern and 3050 fossil time series in BioDeepTime. Software Format SQLite, Comma-separated values.Publisher PDFPeer reviewe

    Surface sediment samples from early age of seafloor exploration can provide a late 19th century baseline of the marine environment

    No full text
    Ocean-floor sediment samples collected up to 150 years ago represent an important historical archive to benchmark global changes in the seafloor environment, such as species' range shifts and pollution trends. Such benchmarking requires that the historical sediment samples represent the state of the environment at-or shortly before the time of collection. However, early oceanographic expeditions sampled the ocean floor using devices like the sounding tube or a dredge, which potentially disturb the sediment surface and recover a mix of Holocene (surface) and deeper, Pleistocene sediments. Here we use climate-sensitive microfossils as a fast biometric method to assess if historical seafloor samples contain a mixture of modern and glacial sediments. Our assessment is based on comparing the composition of planktonic foraminifera (PF) assemblages in historical samples with Holocene and Last Glacial Maximum (LGM) global reference datasets. We show that eight out of the nine historical samples contain PF assemblages more similar to the Holocene than to the LGM PF assemblages, but the comparisons are only significant when there is a high local species' temporal turnover (from the LGM to the Holocene). When analysing temporal turnover globally, we show that upwelling and temperate regions had greatest species turnover, which are areas where our methodology would be most diagnostic. Our results suggest that sediment samples from historical collections can provide a baseline of the state of marine ecosystems in the late nineteenth century, and thus be used to assess ocean global change trends.</p

    Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment

    No full text
    The size structure of plankton communities is an important determinant of their functions in marine ecosystems. However, few studies have quantified how organism size varies within species across biogeographical scales. Here, we investigate how planktonic foraminifera, a ubiquitous zooplankton group, vary in size across the tropical and subtropical oceans of the world. Using a recently digitized museum collection, we measured shell area of 3,799 individuals of nine extant species in 53 seafloor sediments. We first analyzed potential size biases in the collection. Then, for each site, we obtained corresponding local values of mean annual seaā€surface temperature (SST), net primary productivity (NPP), and relative abundance of each species. Given former studies, we expected species to reach largest shell sizes under optimal environmental conditions. In contrast, we observe that species differ in how much their size variation is explained by SST, NPP, and/or relative abundance. While some species have predictable size variation given these variables (Trilobatus sacculifer, Globigerinoides conglobatus, Globigerinella siphonifera, Pulleniatina obliquiloculata, Globorotalia truncatulinoides), other species show no relationships between size and the studied covariates (Globigerinoides ruber, Neogloboquadrina dutertrei, Globorotalia menardii, Globoconella inflata). By incorporating intraspecific variation and sampling broader geographical ranges compared to previous studies, we conclude that shell size variation in planktonic foraminifera species cannot be consistently predicted by the environment. Our results caution against the general use of size as a proxy for planktonic foraminifera environmental optima. More generally, our work highlights the utility of natural history collections and the importance of studying intraspecific variation when interpreting macroecological patterns

    Plankton response to global warming is characterized by non-uniform shifts in assemblage composition since the last ice age

    Get PDF
    Biodiversity is expected to change in response to future global warming. However, it is difficult to predict how species will track the ongoing climate change. Here we use the fossil record of planktonic foraminifera to assess how biodiversity responded to climate change with a magnitude comparable to future anthropogenic warming. We compiled time series of planktonic foraminifera assemblages, covering the time from the last ice age across the deglaciation to the current warm period. Planktonic foraminifera assemblages shifted immediately when temperature began to rise at the end of the last ice age and continued to change until approximately 5,000 years ago, even though global temperature remained relatively stable during the last 11,000 years. The biotic response was largest in the mid latitudes and dominated by range expansion, which resulted in the emergence of new assemblages without analogues in the glacial ocean. Our results indicate that the plankton response to global warming was spatially heterogeneous and did not track temperature change uniformly over the past 24,000 years. Climate change led to the establishment of new assemblages and possibly new ecological interactions, which suggests that current anthropogenic warming may lead to new, different plankton community composition

    Supplementary Material: Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment

    No full text
    The size structure of plankton communities is an important determinant of their functions in marine ecosystems. However, few studies have quantified how organism size varies within species across biogeographical scales. Here, we investigate how planktonic foraminifera, a ubiquitous zooplankton group, vary in size across the tropical and subtropical oceans of the world. Using a recently digitized museum collection, we measured shell area of 3,799 individuals of nine extant species in 53 seafloor sediments. We first analyzed potential size biases in the collection. Then, for each site, we obtained corresponding local values of mean annual sea&#x2010;surface temperature (SST), net primary productivity (NPP), and relative abundance of each species. Given former studies, we expected species to reach largest shell sizes under optimal environmental conditions. In contrast, we observe that species differ in how much their size variation is explained by SST, NPP, and/or relative abundance. While some species have predictable size variation given these variables (Trilobatus sacculifer, Globigerinoides conglobatus, Globigerinella siphonifera, Pulleniatina obliquiloculata, Globorotalia truncatulinoides), other species show no relationships between size and the studied covariates (Globigerinoides ruber, Neogloboquadrina dutertrei, Globorotalia menardii, Globoconella inflata). By incorporating intraspecific variation and sampling broader geographical ranges compared to previous studies, we conclude that shell size variation in planktonic foraminifera species cannot be consistently predicted by the environment. Our results caution against the general use of size as a proxy for planktonic foraminifera environmental optima. More generally, our work highlights the utility of natural history collections and the importance of studying intraspecific variation when interpreting macroecological patterns. ##Related materials: Marina C. Rillo, C. Giles Miller, M Kucera and THG Ezard (2020) Intraspecific size variation in planktonic foraminifera cannot be consistently predicted by the environment. Ecology and Evolution (in press) https://doi.org/10.1002/ece3.6792 Marina C. Rillo, M Kucera, THG Ezard and C. Giles Miller, (2019) Surface Sediment Samples From Early Age of Seafloor Exploration Can Provide a Late 19th Century Baseline of the Marine Environment. Frontiers in Marine Science 5:517; DOI: https://doi.org/10.3389/fmars.2018.00517 Marina C. Rillo, J. Whittaker, THG Ezard, A. Purvis, A.S. Henderson, S. Stukins &amp;amp; C.G. Miller, (2016) The unknown planktonic foraminiferal pioneer Henry A. Buckley and his collection at the Natural History Museum, London, Journal of Micropalaeontology, 36, 191-194, DOI: https://doi.org/10.1144/jmpaleo2016-020 Marina Costa Rillo (2016). Dataset: Henry Buckley Collection of Planktonic Foraminifera. Natural History Museum Data Portal (data.nhm.ac.uk). DOI: https://doi.org/10.5519/0035055</span

    Thresholds and tipping points are tempting but not necessarily suitable concepts to address anthropogenic biodiversity changeā€”an intervention

    Get PDF
    Thresholds and tipping points are frequently used concepts to address the risks of global change pressures and their mitigation. It is tempting to also consider them to understand biodiversity change and design measures to ensure biotic integrity. Here, we argue that thresholds and tipping points do not work well in the context of biodiversity change for conceptual, ethical, and empirical reasons. Defining a threshold for biodiversity change (a maximum tolerable degree of turnover or loss) neglects that ecosystem multifunctionality often relies on the complete entangled web of species interactions and invokes the ethical issue of declaring some biodiversity dispensable. Alternatively defining a threshold for pressures on biodiversity might seem more straightforward as it addresses the causes of biodiversity change. However, most biodiversity change appears to be gradual and accumulating over time rather than reflecting a disproportionate change when transgressing a pressure threshold. Moreover, biodiversity change is not in synchrony with environmental change, but massively delayed through inertia inflicted by population dynamics and demography. In consequence, formulating environmental management targets as preventing the transgression of thresholds is less useful in the context of biodiversity change, as such thresholds neither capture how biodiversity responds to anthropogenic pressures nor how it links to ecosystem functioning. Instead, addressing biodiversity change requires reflecting the spatiotemporal complexity of altered local community dynamics and temporal turnover in composition leading to shifts in distributional ranges and species interactions

    Supplementary Material: Surface Sediment Samples From Early Age of Seafloor Exploration Can Provide a Late 19th Century Baseline of the Marine Environment

    No full text
    Ocean-floor sediment samples collected up to 150 years ago represent an important historical archive to benchmark global changes in the seafloor environment, such as species&#39; range shifts and pollution trends. Such benchmarking requires that the historical sediment samples represent the state of the environment at-or shortly before the time of collection. However, early oceanographic expeditions sampled the ocean floor using devices like the sounding tube or a dredge, which potentially disturb the sediment surface and recover a mix of Holocene (surface) and deeper, Pleistocene sediments. Here we use climate-sensitive microfossils as a fast biometric method to assess if historical seafloor samples contain a mixture of modern and glacial sediments. Our assessment is based on comparing the composition of planktonic foraminifera (PF) assemblages in historical samples with Holocene and Last Glacial Maximum (LGM) global reference datasets. We show that eight out of the nine historical samples contain PF assemblages more similar to the Holocene than to the LGM PF assemblages, but the comparisons are only significant when there is a high local species&#39; temporal turnover (from the LGM to the Holocene). When analysing temporal turnover globally, we show that upwelling and temperate regions had greatest species turnover, which are areas where our methodology would be most diagnostic. Our results suggest that sediment samples from historical collections can provide a baseline of the state of marine ecosystems in the late nineteenth century, and thus be used to assess ocean global change trends. ## Related materials: Rillo MC, Kucera M, Ezard THG and Miller CG (2019) Surface Sediment Samples From Early Age of Seafloor Exploration Can Provide a Late 19th Century Baseline of the Marine Environment. Front. Mar. Sci. 5:517. doi: https://doi.org/10.3389/fmars.2018.00517 Marina Costa Rillo (2016). Dataset: Henry Buckley Collection of Planktonic Foraminifera. Natural History Museum Data Portal (data.nhm.ac.uk). https://doi.org/10.5519/0035055</span
    corecore