8,066 research outputs found
15 years of VLBI observations of two compact radio sources in Messier 82
We present the results of a second epoch of 18cm global Very Long-Baseline
Interferometry (VLBI) observations, taken on 23 February 2001, of the central
kiloparsec of the nearby starburst galaxy Messier 82. These observations
further investigate the structural and flux evolution of the most compact radio
sources in the central region of M82. The two most compact radio objects in M82
have been investigated (41.95+575 and 43.31+592). Using this recent epoch of
data in comparison with our previous global VLBI observations and two earlier
epochs of European VLBI Network observations we measure expansion velocities in
the range of 1500-2000km/s for 41.95+575, and 9000-11000km/s for 43.31+592
using various independent methods. In each case the measured remnant expansion
velocities are significantly larger than the canonical expansion velocity
(500km/s) of supernova remnants within M82 predicted from theoretical models.
In this paper we discuss the implications of these measured expansion
velocities with respect to the high density environment that the SNR are
expected to reside in within the centre of the M82 starburst.Comment: Accepted for publication in MNRAS, 9 pages, 8 figure
Forward Flux Sampling-type schemes for simulating rare events: Efficiency analysis
We analyse the efficiency of several simulation methods which we have
recently proposed for calculating rate constants for rare events in stochastic
dynamical systems, in or out of equilibrium. We derive analytical expressions
for the computational cost of using these methods, and for the statistical
error in the final estimate of the rate constant, for a given computational
cost. These expressions can be used to determine which method to use for a
given problem, to optimize the choice of parameters, and to evaluate the
significance of the results obtained. We apply the expressions to the
two-dimensional non-equilibrium rare event problem proposed by Maier and Stein.
For this problem, our analysis gives accurate quantitative predictions for the
computational efficiency of the three methods.Comment: 19 pages, 13 figure
Study of the April 20, 2007 CME-Comet Interaction Event with an MHD Model
This study examines the tail disconnection event on April 20, 2007 on comet
2P/Encke, caused by a coronal mass ejection (CME) at a heliocentric distance of
0.34 AU. During their interaction, both the CME and the comet are visible with
high temporal and spatial resolution by the STEREO-A spacecraft. Previously,
only current sheets or shocks have been accepted as possible reasons for comet
tail disconnections, so it is puzzling that the CME caused this event. The MHD
simulation presented in this work reproduces the interaction process and
demonstrates how the CME triggered a tail disconnection in the April 20 event.
It is found that the CME disturbs the comet with a combination of a
sudden rotation of the interplanetary magnetic field (IMF), followed by a
gradual rotation. Such an interpretation applies our understanding
of solar wind-comet interactions to determine the \textit{in situ} IMF
orientation of the CME encountering Encke.Comment: 13 pages, 3 figures, accepted by the ApJ Letter
Relationship between Processing Method and the Glycemic Indices of Ten Sweet Potato (Ipomoea batatas) Cultivars Commonly Consumed in Jamaica
This study investigated the effect of different traditional cooking methods on glycemic index (GI) and glycemic response of ten Sweet potato (Ipomoea batatas) cultivars commonly eaten in Jamaica. Matured tubers were cooked by roasting, baking, frying, or boiling then immediately consumed by the ten nondiabetic test subjects (5 males and 5 females; mean age of 27 ± 2 years). The GI varied between 41 ± 5–93 ± 5 for the tubers studied. Samples prepared by boiling had the lowest GI (41 ± 5–50 ± 3), while those processed by baking (82 ± 3–94 ± 3) and roasting (79 ± 4–93 ± 2) had the highest GI values. The study indicates that the glycemic index of Jamaican sweet potatoes varies significantly with the method of preparation and to a lesser extent on intravarietal differences. Consumption of boiled sweet potatoes could minimize postprandial blood glucose spikes and therefore, may prove to be more efficacious in the management of type 2 diabetes mellitus
Simulating quantum-optical phenomena with cold atoms in optical lattices
We propose a scheme involving cold atoms trapped in optical lattices to
observe different phenomena traditionally linked to quantum-optical systems.
The basic idea consists of connecting the trapped atomic state to a non-trapped
state through a Raman scheme. The coupling between these two types of atoms
(trapped and free) turns out to be similar to that describing light-matter
interaction within the rotating-wave approximation, the role of matter and
photons being played by the trapped and free atoms, respectively. We explain in
particular how to observe phenomena arising from the collective spontaneous
emission of atomic and harmonic oscillator samples such as superradiance and
directional emission. We also show how the same setup can simulate Bose-Hubbard
Hamiltonians with extended hopping as well as Ising models with long-range
interactions. We believe that this system can be realized with state of the art
technology
Nonlinear force-free reconstruction of the global solar magnetic field: methodology
We present a novel numerical method that allows the calculation of nonlinear
force-free magnetostatic solutions above a boundary surface on which only the
distribution of the normal magnetic field component is given. The method relies
on the theory of force-free electrodynamics and applies directly to the
reconstruction of the solar coronal magnetic field for a given distribution of
the photospheric radial field component. The method works as follows: we start
with any initial magnetostatic global field configuration (e.g. zero, dipole),
and along the boundary surface we create an evolving distribution of tangential
(horizontal) electric fields that, via Faraday's equation, give rise to a
respective normal field distribution approaching asymptotically the target
distribution. At the same time, these electric fields are used as boundary
condition to numerically evolve the resulting electromagnetic field above the
boundary surface, modelled as a thin ideal plasma with non-reflecting,
perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear
force-free configuration that satisfies the given normal field distribution on
the boundary. This is different from existing methods relying on a fixed
boundary condition - the boundary evolves toward the a priori given one, at the
same time evolving the three-dimensional field solution above it. Moreover,
this is the first time a nonlinear force-free solution is reached by using only
the normal field component on the boundary. This solution is not unique, but
depends on the initial magnetic field configuration and on the evolutionary
course along the boundary surface. To our knowledge, this is the first time
that the formalism of force-free electrodynamics, used very successfully in
other astrophysical contexts, is applied to the global solar magnetic field.Comment: 18 pages, 5 figures, Solar Physic
A furnace and environmental cell for the in situ investigation of molten salt electrolysis using high-energy X-ray diffraction
This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed
Optical monitoring of the z=4.40 quasar Q 2203+292
We report Cousins R-band monitoring of the high-redshift (z=4.40) radio quiet
quasar Q 2203+292 from May 1999 to October 2007. The quasar shows maximum
peak-to-peak light curve amplitude of ~0.3 mag during the time of our
monitoring, and ~0.9 mag when combined with older literature data. The rms of a
fit to the light curve with a constant is 0.08 mag and 0.2 mag, respectively.
The detected changes are at ~3-sigma level. The quasar was in a stable state
during the recent years and it might have undergone a brightening event in the
past. The structure function analysis concluded that the object shows
variability properties similar to those of the lower redshift quasars. We set a
lower limit to the Q 2203+292 broad line region mass of 0.3-0.4 M_odot.
Narrow-band imaging search for redshifted Ly_alpha from other emission line
objects at the same redshift shows no emission line objects in the quasar
vicinity.Comment: 9 pages, 8 figures, accepted for publication in MNRA
- shell gap reduction in neutron-rich systems and cross-shell excitations in O
Excited states in O were populated in the reaction
Be(C,) at Florida State University. Charged particles
were detected with a particle telescope consisting of 4 annularly segmented Si
surface barrier detectors and radiation was detected with the FSU
detector array. Five new states were observed below 6 MeV from the
- and -- coincidence data. Shell model
calculations suggest that most of the newly observed states are core-excited
1p-1h excitations across the shell gap. Comparisons between
experimental data and calculations for the neutron-rich O and F isotopes imply
a steady reduction of the - shell gap as neutrons are added
- …