8,066 research outputs found

    15 years of VLBI observations of two compact radio sources in Messier 82

    Full text link
    We present the results of a second epoch of 18cm global Very Long-Baseline Interferometry (VLBI) observations, taken on 23 February 2001, of the central kiloparsec of the nearby starburst galaxy Messier 82. These observations further investigate the structural and flux evolution of the most compact radio sources in the central region of M82. The two most compact radio objects in M82 have been investigated (41.95+575 and 43.31+592). Using this recent epoch of data in comparison with our previous global VLBI observations and two earlier epochs of European VLBI Network observations we measure expansion velocities in the range of 1500-2000km/s for 41.95+575, and 9000-11000km/s for 43.31+592 using various independent methods. In each case the measured remnant expansion velocities are significantly larger than the canonical expansion velocity (500km/s) of supernova remnants within M82 predicted from theoretical models. In this paper we discuss the implications of these measured expansion velocities with respect to the high density environment that the SNR are expected to reside in within the centre of the M82 starburst.Comment: Accepted for publication in MNRAS, 9 pages, 8 figure

    Forward Flux Sampling-type schemes for simulating rare events: Efficiency analysis

    Full text link
    We analyse the efficiency of several simulation methods which we have recently proposed for calculating rate constants for rare events in stochastic dynamical systems, in or out of equilibrium. We derive analytical expressions for the computational cost of using these methods, and for the statistical error in the final estimate of the rate constant, for a given computational cost. These expressions can be used to determine which method to use for a given problem, to optimize the choice of parameters, and to evaluate the significance of the results obtained. We apply the expressions to the two-dimensional non-equilibrium rare event problem proposed by Maier and Stein. For this problem, our analysis gives accurate quantitative predictions for the computational efficiency of the three methods.Comment: 19 pages, 13 figure

    Study of the April 20, 2007 CME-Comet Interaction Event with an MHD Model

    Full text link
    This study examines the tail disconnection event on April 20, 2007 on comet 2P/Encke, caused by a coronal mass ejection (CME) at a heliocentric distance of 0.34 AU. During their interaction, both the CME and the comet are visible with high temporal and spatial resolution by the STEREO-A spacecraft. Previously, only current sheets or shocks have been accepted as possible reasons for comet tail disconnections, so it is puzzling that the CME caused this event. The MHD simulation presented in this work reproduces the interaction process and demonstrates how the CME triggered a tail disconnection in the April 20 event. It is found that the CME disturbs the comet with a combination of a 180180^\circ sudden rotation of the interplanetary magnetic field (IMF), followed by a 9090^\circ gradual rotation. Such an interpretation applies our understanding of solar wind-comet interactions to determine the \textit{in situ} IMF orientation of the CME encountering Encke.Comment: 13 pages, 3 figures, accepted by the ApJ Letter

    Relationship between Processing Method and the Glycemic Indices of Ten Sweet Potato (Ipomoea batatas) Cultivars Commonly Consumed in Jamaica

    Get PDF
    This study investigated the effect of different traditional cooking methods on glycemic index (GI) and glycemic response of ten Sweet potato (Ipomoea batatas) cultivars commonly eaten in Jamaica. Matured tubers were cooked by roasting, baking, frying, or boiling then immediately consumed by the ten nondiabetic test subjects (5 males and 5 females; mean age of 27 ± 2 years). The GI varied between 41 ± 5–93 ± 5 for the tubers studied. Samples prepared by boiling had the lowest GI (41 ± 5–50 ± 3), while those processed by baking (82 ± 3–94 ± 3) and roasting (79 ± 4–93 ± 2) had the highest GI values. The study indicates that the glycemic index of Jamaican sweet potatoes varies significantly with the method of preparation and to a lesser extent on intravarietal differences. Consumption of boiled sweet potatoes could minimize postprandial blood glucose spikes and therefore, may prove to be more efficacious in the management of type 2 diabetes mellitus

    Simulating quantum-optical phenomena with cold atoms in optical lattices

    Get PDF
    We propose a scheme involving cold atoms trapped in optical lattices to observe different phenomena traditionally linked to quantum-optical systems. The basic idea consists of connecting the trapped atomic state to a non-trapped state through a Raman scheme. The coupling between these two types of atoms (trapped and free) turns out to be similar to that describing light-matter interaction within the rotating-wave approximation, the role of matter and photons being played by the trapped and free atoms, respectively. We explain in particular how to observe phenomena arising from the collective spontaneous emission of atomic and harmonic oscillator samples such as superradiance and directional emission. We also show how the same setup can simulate Bose-Hubbard Hamiltonians with extended hopping as well as Ising models with long-range interactions. We believe that this system can be realized with state of the art technology

    Nonlinear force-free reconstruction of the global solar magnetic field: methodology

    Full text link
    We present a novel numerical method that allows the calculation of nonlinear force-free magnetostatic solutions above a boundary surface on which only the distribution of the normal magnetic field component is given. The method relies on the theory of force-free electrodynamics and applies directly to the reconstruction of the solar coronal magnetic field for a given distribution of the photospheric radial field component. The method works as follows: we start with any initial magnetostatic global field configuration (e.g. zero, dipole), and along the boundary surface we create an evolving distribution of tangential (horizontal) electric fields that, via Faraday's equation, give rise to a respective normal field distribution approaching asymptotically the target distribution. At the same time, these electric fields are used as boundary condition to numerically evolve the resulting electromagnetic field above the boundary surface, modelled as a thin ideal plasma with non-reflecting, perfectly absorbing outer boundaries. The simulation relaxes to a nonlinear force-free configuration that satisfies the given normal field distribution on the boundary. This is different from existing methods relying on a fixed boundary condition - the boundary evolves toward the a priori given one, at the same time evolving the three-dimensional field solution above it. Moreover, this is the first time a nonlinear force-free solution is reached by using only the normal field component on the boundary. This solution is not unique, but depends on the initial magnetic field configuration and on the evolutionary course along the boundary surface. To our knowledge, this is the first time that the formalism of force-free electrodynamics, used very successfully in other astrophysical contexts, is applied to the global solar magnetic field.Comment: 18 pages, 5 figures, Solar Physic

    A furnace and environmental cell for the in situ investigation of molten salt electrolysis using high-energy X-ray diffraction

    Get PDF
    This paper describes the design, construction and implementation of a relatively large controlled-atmosphere cell and furnace arrangement. The purpose of this equipment is to facilitate the in situ characterization of materials used in molten salt electrowinning cells, using high-energy X-ray scattering techniques such as synchrotron-based energy-dispersive X-ray diffraction. The applicability of this equipment is demonstrated by quantitative measurements of the phase composition of a model inert anode material, which were taken during an in situ study of an operational Fray-Farthing-Chen Cambridge electrowinning cell, featuring molten CaCl(2) as the electrolyte. The feasibility of adapting the cell design to investigate materials in other high-temperature environments is also discussed

    Optical monitoring of the z=4.40 quasar Q 2203+292

    Full text link
    We report Cousins R-band monitoring of the high-redshift (z=4.40) radio quiet quasar Q 2203+292 from May 1999 to October 2007. The quasar shows maximum peak-to-peak light curve amplitude of ~0.3 mag during the time of our monitoring, and ~0.9 mag when combined with older literature data. The rms of a fit to the light curve with a constant is 0.08 mag and 0.2 mag, respectively. The detected changes are at ~3-sigma level. The quasar was in a stable state during the recent years and it might have undergone a brightening event in the past. The structure function analysis concluded that the object shows variability properties similar to those of the lower redshift quasars. We set a lower limit to the Q 2203+292 broad line region mass of 0.3-0.4 M_odot. Narrow-band imaging search for redshifted Ly_alpha from other emission line objects at the same redshift shows no emission line objects in the quasar vicinity.Comment: 9 pages, 8 figures, accepted for publication in MNRA

    pp-sdsd shell gap reduction in neutron-rich systems and cross-shell excitations in 20^{20}O

    Full text link
    Excited states in 20^{20}O were populated in the reaction 10^{10}Be(14^{14}C,α\alpha) at Florida State University. Charged particles were detected with a particle telescope consisting of 4 annularly segmented Si surface barrier detectors and γ\gamma radiation was detected with the FSU γ\gamma detector array. Five new states were observed below 6 MeV from the α\alpha-γ\gamma and α\alpha-γ\gamma-γ\gamma coincidence data. Shell model calculations suggest that most of the newly observed states are core-excited 1p-1h excitations across the N=Z=8N = Z = 8 shell gap. Comparisons between experimental data and calculations for the neutron-rich O and F isotopes imply a steady reduction of the pp-sdsd shell gap as neutrons are added
    corecore