17,694 research outputs found
Innovative Opportunities for Elementary and Middle School Teachers to Maintain Currency in Mathematics and Science: A Community College-School System Partnership
Since 1992 the Manassas Campus of Northern Virginia Community College – in response to requests from local school systems – has developed four innovative methods of assisting elementary, secondary and middle school teachers to enhance their content knowledge in science and mathematics, as well as integrate curriculum units for classroom presentation. These methods are based on the assumptions that: - While teachers at this level have fundamental understanding of math and science, if they wish to incorporate new concepts or technologies from these fields, graduate level content courses are generally beyond their background level. - Community College faculty can often provide a bridge that connects advanced content in science and mathematics with the applications that can be adapted to elementary/middle school curriculum. - Presenting content to a mixed audience of teachers from K-8 allows teachers to see how content can be adapted to grade levels above and below. - Content delivery methods must be interactive and must be responsive to the multiple demands on these teachers’ time. This requires flexibility in scheduling and course requirements
REGIONAL GAINS AND LOSSES FOR CONSUMERS AND PRODUCERS FROM CHANGES IN FLUID MILK PRICES
Agribusiness,
Simulation of gemini-agena docking
Attitude and translation control using visual docking simulator for Gemini/Agena projec
High voltage solid-state relay
Hybrid microelectronics relay has characteristics significantly superior to conventional solid state relays. Relay provides 2500 Vdc input to output isolation and operates from high threshold logic signal to switch load of 400 Vdc at 2 mA. Technology should be of interest to manufacturers of discrete components
Structural optimization by generalized, multilevel decomposition
The developments toward a general multilevel optimization capability and results for a three-level structural optimization are described. The method partitions a structure into a number of substructuring levels where each substructure corresponds to a subsystem in the general case of an engineering system. The method is illustrated by a portal framework that decomposes into individual beams. Each beam is a box that can be further decomposed into stiffened plates. Substructuring for this example spans three different levels: (1) the bottom level of finite elements representing the plates; (2) an intermediate level of beams treated as substructures; and (3) the top level for the assembled structure. The three-level case is now considered to be qualitatively complete
FUEL-INSULATION TRADEOFFS FOR ARKANSAS BROILER HOUSES
Livestock Production/Industries,
Application of the Moessbauer technique to the study of probable lunar and planetary surface material and to the study of returned lunar surface samples Final report
Preliminary results from Mossbauer instrumental analysis of Apollo 12 lunar rock and soil sample
- …