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STRUCTURAL OPTIMIZATION 8Y GENERALIZED,
MULTILEVEL DECOMPOSITION

Jaroslaw Sobieszczanski-Sobieski*
NASA Langley Research Center
Hampton, Virginia

and

Benjamin B. James** and Michael F. Riley*
Aerospace Technologies Division
Kentron International Inc.
Hampton, Virginia

Abstract

The developments toward a general miltilevel
optimization capability and results for a three-
level structural optimization are described. The
latter is considered a major stage in the method
development because the addition of more levels
beyond three does not introduce any new qualitat-
ive elements, so that a three-ievel implemen-
tation is qualitatively equivalent to a multi-
level implementation.

The method partitions a structure into a
number of substructuring levels where each sub-
structure corresponds to a subsystem in the
general case of an engineering system. The
method is illustrated by a portal framework that
decomposes into individual beams. Each beam is a
box that can be further decomposed into stiffened
plates. Consequently, substructuring for this
example spans three different levels: the bottom
level of finite elements representing the plates,
an intermediate level of beams treated as sub-
structures, and the top level. for the assembled
structure. This example is an extension of a
case presented previously which was limited to
two levels. Further extensions would add only
more intermediate substructuring levels; there-

fore, the three-level case 1is qualitatively

complete.

Nomenclature

Quantities

A Cross~-sectional area

C Cumulative constraint (equation 11)

c Capacity: limitation on the ability
to meet a particular demand D (e.g.,
allowable stress)

D Demand: a physical quantity the

structure is required to have, to
support, or to be subjected to in
order to perform its function (e.g.,
stress) .

Lal

*Deputy Head, Interdisciplinary Research Office,
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**Senior Structures Engineer, Advanced Computer
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*Scientific  Programmer,
Methods Unit.

Advanced Computer

F Objective function

f() Functional relation

g Vector of constraint functions, 93

h Equality constraints defined by
equation 10

1 Cross-sectional moment of inertia

K Stiffness matrix

KS A function defined by equation 11

L Lower bound on ‘Xt including move
limits

M Mass (or "middle" when superscript)

Q Boundary forces on SS

q Number of the diagonal and off-
diagonal symmetric entries in K

SS A substructure (including the extremes
of the assembled structure and a

single structural element)

STOC Acronym: subject to constraints

] Upper bound on X including move limits
X Vector of design variables, Xt

Y Vectoglcontaining those entries of K

and the mass M that are to be - held
constant in an SS optimization

n A vector defined by equation 15

o _A user-controlled constant in the KS
function

A Increment of a variable (see

definition of subscript o)

Indices, Subscripts, and Superscripts

Overbar  Denotes an optima)l quantity

B Superscript for bottom level

b Superscript to denote an association
with the SS boundary

e Subscript to identify an extrapolated

value

/L/z%'*q'z;/éfé
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i Index or superscript to identify the
substructure level, 1 = 1 to igzys
see Figure 1

M Index or superscript to identify the
substructure position, counting from
left, at level i, see Figure 1, or
subscript of an entry in g in optimi-
zation without decomposition

k Index or superscript to identify index
Jj of the parent SS, see Figure 1

1 Equivalent of k, see Figure 1

M Superscript for middle level

m Equivalent of i, m = i-1, see Figure 1

n Equivalent of i, n = m-1, see Figure 1

0 Subscript to identify an. original
value from which o is measured

p Equivalent of k, see Figure 1

r Subscript of an entry in Q, r =1 to R

s Subscript of an entry in h, s =1to S

T As superscript denotes a transposed
vector

t Subscript of an entry in X, t =1 to T

W Subscript of an entry in g in multi-
level optimization, w =1 to W

b4 Subscript of an entry in VY, z=1tol

Introduction

Formal optimization methods applied to
realistic structures built-up of many components
and carrying a large number of loading cases are
hindered by an excessive number of design vari-
ables and constraints. They frequently become

.too costly and unmanageable, and can easily
saturate even the largest computers available
today or in the foreseeable future. An obvious
remedy is to break the large optimization problem
into several smaller subproblems and a coordi-
nation problem formulated to preserve couplings
among these subproblems. A very important ben-
efit of such an approach, in addition to making
the whole problem more tractable, is preservation
of the customary organization of the design
office in which many engineers work concurrently
on different parts of the problem. Therefore,
research has been directed toward multilevel
optimization methods that decompose large
problems into a hierarchically related set of
smaller subproblems while preserving their
coupling. This approach meshes well with the
recent trend. in computer technology toward
computing distributed over a network of computers
whose characteristics may be matched to individ-
val subproblems for more efficiency and con-
venience. Moreover, the decomposition approach
is natural in an engineering organization. Since
engineers tend to cluster into groups concentrat-
ing on parts of a project in order to develop
broad work front to shorten the development time.

A number of procedures for implementation of
the foregoing approach has been proposed for
structural applications, (e.g., refs. 1, 2, and
3). A multilevel optimization with decomposition
has also been formulated in a general manner for
use in engineering system design (ref. 4) con-
cerned with the "trade-offs" among various physi-
cal subsystems that may be governed by different
engineering disciplines. Thes unique feature of
the algorithm proposed in reference 4 is the use
of the optimum sensitivity derivatives introduced
in reference 5 as means to approximate the coup-
lings among the subsystems.

When the system optimization formulation
established in reference 4 is applied to struc-
tural optimization, it's analysis part coincides
with a general, multilevel substructuring (e.g.,
refs. 6, 7, and 8). In the simplest case, the
system acquires a meaning of a complete structure
and each subsystem corresponds to a single struc-
tural component that may be represented by a
single finite element. This is a two-level,
structural optimization whose algorithm was
illustrated by an example of a framework reported
in reference 9. This served as a verification of
the general purpose algorithm laid out in refer-
ence 4.

Since the general algorithm presented in
reference 4 allows a theoretically unlimited
number of hierarchical subsystem levels in the
decomposition, its continuing development
requires verification by applications of more
than two levels. The purpose of this paper is to
report such a verification using structural opti-
mization with a three-level decomposition. In
this decomposition, the highest level corresponds
to the assembled structure, the level below
corresponds to substructures, and the third,
bottom level, represents the structural
components that make up the substructures.

Extension of the scheme beyond the three
levels would require more levels of nested sub-
structures sandwiched between the top and bottom
levels. Thus, such an extension would not add
any qualitatively new subsystems to the scheme
and, therefore, one may regard the three-level
optimization as the simplest case of the most
general miltilevel optimization.

The paper presents an multilevel algorithm
for structural optimization and its verification
by a three-level optimization of a framework
structure.

One-Level Optimization

An optimization formuiation without decompo-
sition serves as a reference from which the
multilevel optimization algorithm is derived.

The optimization is defined in terms of:
the design variables, Xj, which are the cross-
sectional dimensions of the structural compo-
nents; the objective function F(X) that can be
any computable function of these variables
{structural mass is the freguent choice}; and the
constraints, gj(x), imposed on the the behavior
variables to account for the potential failure
modes. It is useful to distinguish here between
the "local" constraints such as local buckling



that depend predominantly on the component behav-
jor and the "global" constraints that primarily
depend on the characteristics of the assembled
structure (e.g., displacements or overall buck-
ling). However, in the one-level optimization
formulation both constraint categories will be
treated in the same way.

Writing the constraint functions as

g = (D/c - 1) < 0 (1)

the optimization problem in a standard formu-
lation is

find min F(X)
X

STOC  gj(X) <0 (2)

and requires a search of the n-dimensional design
space considering all the design variables and
constraints concurrently. In contrast, an algor-
ithm presented in the next section breaks the
probiem into a number of search operations, each
concerned with a smaller number of design vari-
ables and constraints.

A Multilevel Optimization

Preliminary Definitions

The diagram in Figure 1 shows a structure
decomposed into several levels of substructures.
The term “substructure" will refer to any entity
in this decomposition scheme other than the full,
assembled structure represented by the box on the
top of the pyramid. In the limit, then, a sub-
structure may be a single structural component
representing the wultimate geometrical detail
appropriate to the problem at hand. The sub-
structure levels are numbered from 1 on the top
to imax at the bottom. The hierarchical nature
of the scheme instigates the use of a term
"parent" to the structure at level i which, in
turn, is decomposed into a number of "daughter"
substructures at level i+l, A daughter may have
only one parent and that parent must be at the
level immediately above. Thus, it will be con-
venient to label each substructure SSijk, where i
denotes the level, j defines the position at the
level i counting from the left, and k identifies
the parent's position at the level i-1. The sub-
structure occupying the last position in a
particular parent-daughter succession represent
the ultimate level of detail at which the
decomposition stops. There 1is no requirement
that all such structures must be at the same
bottom level imax. Any particular parent-
daughter succession line may end at 1 < i <=
mmax.

Substructuring analysis (e.g., refs. 6, 7,
8) of a parent” substructure SSijk, yields the
forces acting on the boundary of each daughter
substructure. In the general case these forces,
collected in a vector Q, depend on the stiffness
properties of all the daughter substructures so
that ‘

qQ = f(Kbi+1,j) (3)

where KP1*1,J deqotes the boundary stiffness
matrix of the jth daughter substructure.

The stiffness matrix KiJ of the SSijk is
assembled of the matrices KP1*l,J the fact
symbolically expressed as

Kij = S(Kbi+1,j) " (4)

where S stands for an appropriate stiffness
summation operator.

Similarly, the mass, MJ, of sSijk is a
simple sum of the daughter masses

MiJ = z M1+1;J
J (8)

For a substructure SSijk that is at the ultimate
level of detail and, therefore, is pot further
subdivided, the stiffness matrix, KP'J, and the
mass, M'J, derive directly from the cross-
sectional dimensions denoted by X%J s0 that

KO £ k1 = £(x}J)

and

Mid = £(xid)
t (7)

The same cross-sectional dimensions and other
appropriate geometrical and material data can be
entered together with the forces Q into a
procedure to calculate stresses, internal forces,
and the critical stresses (and/or internal
forces) for local buckling. This information,
together with the displacements calculated in the
analysis of the entire structure and each sub-
structure and overall elastic stability analysis
results, describe the static elastic behavior
that may be subjected to constraints in the opti-
mization.

Although the foregoing definition of sub-
structuring analysis is based on the stiffness
approach, the use of a finite element analysis is
not mandatory for the multilevel optimization
algorithm whose description will follow. As far
as that algorithm is concerned, the analysis is a
"black box" where only the inputs and outputs are
important but not the content.

Multilevel Optimization Algorithm

With the substructuring scheme and analysis
estabiished in the foregoing, this section
describes the optimization algorithm itself. The
essentials of the computer implementation are
also given.,

Basic Concept

The basic concept of the multilevel struc-
tural optimization introduced in reference 9 is
based on the well-known property of a substruc-
ture that the elements of the boundary stiffness
matrices of its daughters on the right-hand side
in equation 4 can be changed in such a way that



its stiffness matrix, Kbij, will be held con-
stant and, therefore, the boundary forces, Q,
will. remain unchanged. In the case of a sub-
structure that is not a parent, the same applies
to its cross-sectional dimensions and its stiff-
ness matrix, KJ, provided, of course, that the
number of symmetric entries, q'J, in KV s
smaller than the number of ¢ross-sectional dimen-
sions, T1J, in the vector X1J.
qld < 1id (8)
When this inequality holds, there is a design
freedom to “tailor" the substructure to a set of
prescribed stiffness properties. Otherwise, if
qld > 1 (9)
then the set of prescribed stiffness properties
either defines the cross-sectional dimensions
uniquely or cannot be physically realized.

Based on the property discussed in the fore-
going, the optimization scheme introduced in
reference 9 and extended here uses the elements
of the boundary stiffness matrices, KP1*l.J of
the daughters as design variables of their parent
substructure. That definition of the design
variables applies to all substructures except
those that have no daughters. Their design vari-
ables are their cross-sectional dimensions,

Optimization At The Most Detailed Level

Introduction of the optimization algorithm
begins at the level of the most detailed sub-
structures that are not further subdivided. It
is assumed that a complete,. top-down, substruc-
turing analysis has been carried out so that for
an. SSijk one has computed its boundary forces
QY. The prerequisite completion of the
analysis implies that the entire structure has
been initializ$d. Consequently, the SSijk has
ity mass, M!J, cross-sectional dimensions,
X%J, and the entries of its stiffness matrix,

k1J, as the given gquantities.

The optimization problem to be solved for
SSijk calls for the cross-sectional dimensions to
be treated as design variables and manipulated so
as to minimize a measure of the constraint viol-
ations local to SSijk while holdjng the elements
of matrix K'J and the mass M'J constant and
staying within the side constraints. '

To formalize this, define:

xiJ Vector of the design variables,
ng, selected among the cross-
sectional dimensions; t = 1
through T1J,

yiJ Vector containing the entries,
Y;J, of the stiffness matrix

kK1 and the mass MiJ to be

h$}d constant; z = 1 through
', ‘

QlJ Vector of the boundary forces,
QlJ; r =1 through RJ,

gij Vector of the inequality con-
straint functions, gLf, w o= 1
through WiJ.

hij Vector of the equality con-
straint functions, h;J; s =

1 through Sij.,_ These . con-
straints Jink Y'J and X' so
that considering equation 6

. . .. (10)
hid = vl . f(kblJ) = 0 a)
hid = yiJ - f(xid) =0 b)

where f( ) denotes a known,
computable function,

tid, uld vectors of lower and upper
11mits on the design variables

X,
¢id Cumulative constraint, a single
valued function of g'J, con-

tinuous and differentiable,
having the property of being
positive when at least one con-
.straint g;J is positive (that

is violated in the convention
adopted here). Following refer-
ence 9 the cumulative constraint
is chosen in form of the
Kresselmeir-Steinhauser (XS)
function (ref, 10).

cid = Ks(g;J) = % In [ exp (pg&j)] (11)

that has the property of approximating the maxi-
mum constraint so that

MAX(g,) < KS < MAX(g,) ++ Tn(W)
. (12)

with the factor p controlled by the user. Thus,
the KS function serves as a convenient single
measure of the degree of constraint violation (or
satisfaction).

In addition to the above functions the
following functional relationship exist:

gt = f(x13, viJ, qlJ)

(13)
The optimization problem definition is
e oo (14)
min cYI(x¥, yu, QW) a)
x4
hid =0 b)

L1 < xiJ < yid c)



In this problem, Y'J is being held constant by
virtue of equation 14b. Consequently, {'J re-
main constant also and together with Y1J form
a set of parameters of the optimization problem,

Solution of this optimization problem (by
any technique available) yields ~a constrained
optimum described by a vector n'J composed of
the minimum value of the cumulative constraint, -
€'J, and the optimal vector of the design
variabies, X1

T o rREITiSAT
nHdT = [cidexidy (15)
This solution is sensitive to the parameters of
the problem, Q'J and Y'J, That sensitivity,
which will be used to approximate the daughter-
parent coupling, may be quantified, as in refer-
ence 9 by means of the optimum sensitivig
derivatives gnef. 5). Considering that Q}
depends on Y'J (equation 3 and the definition
of XW), the total derivative of C!J with
respect to Y;J is

acid _agtd | ¢ actd 20
ayid ~ ayid 3qid  ayid
dYz aYz r aQr aYZ

(16)

In eiyntion 16 the partials of Eii with respect

to Y)J and with respect to 039 are obtained

from the algorithm described in reference 5, and
the partial Q}J with respect to {;J can be

calculated by cqnventional structural sensitivity
analysis., Similarly,

aitd ol o axid 20
(FRF SR £ o S
vyl ay g 20N avld (17)

Optimization Of A Parent Substructure

As shown in figure 2, the parent substruc-
ture SSmkl, m = i-1, receives from its daughters,
SSijk, the minipized values of their cumulative
constraints, C'J, _qptimal values of their
design variables, X'J, and the optimum sensi-
tivity derivatives of these quantities with
respect to  parameters, Q'J and Y'J, accord-
ing to equations 15 through 16. The substruc-
ture SSmk1 itself is a daughter of SSnlp, n =m -
1, that acts on SSmkl with the boundary forces,
Qﬁ*, and governs its boundgiy stiffness matrix
by means of the parameters YT,

The design freedom in SSmkl consists in the
freedom to manipulate the stiffness and mass
distributions among L&s daughters by means of the
design variables & collected in a vector

xmk That vector includes as partitions all
the vectors Y!J whose entries were parameters
in optimizations of the daughters SSijk.

The optimization problem in SSmkl is basi-
cally the same as the one formulated previously
for each daughter SSijk. It calls for finding a
vector X that minimizes a cumulative con-
straint, C™, for SSmkl. That constraint

includes¥the constraints g™ representing the
limits that may be imposed in the SSmkl own
behavior, e.g., the interior djsplacements. It
also includes the quantities T1J to account for
the changes in C'J caused by the variability of
the Xx™_  Ordinarily, every variation in XWK
would require a reoptimization of the affected
daughters SSijk in order to find the new values
of C1J and X'J, However, following the con-
cept introduced in reference 4 “and applied in
reference 9 these new values will be approximated
by a linear extrapolation wusing the optimum
sensitivity derivatives. Thus, the potentially
costly reoptimizations are bypassed.

Formalization of the above optimization
problem follows the pattern establiished for the
daughter substructure SSijk.

Definitions:

xmk Veifor of the design variables,
xT, 't = 1 through Tk,
related to the vectors YiJ by

ymkT = cyije T

X [...:yid:. 0] (18)

ymK Vector containing the entries,
YT*, z = 1 through 2™, of

the boundary stiffness matrix,
kbmk and” the mass, MK,
These quantities are to be held
constant in the ensuing optimi-
zation_and in order to formulate
an appropriate equality con-
straint one needs to recognize

- the functional relationships
discussed below.

The matriz ;fm* is a function of the
stiffness matrix X

xbmk - f(K“‘k) (19)

This function is no longer a simple identity as
it was in equation 6, but represents elimination
of the interior degrees of freedom by means of a
solution of a set of simultaneous linear
equations with many right-hand sides (e.g.,
refs. 6, 7, 8).

In equation 19, the matrix K™ in turn js

a function of the entries of the matrices Kk'J
through a stiffness summation algorithm

KK = S(Ki-j) (20)

Hence, by equation 6

KMk = f(xid) (21)

Following equations 5 and 7, the mass, MK g
MK = £(XT3) = § Mij
) (22)



Qmk Vector of the boundary forces,
Qﬁk; r =1 through R

gm* Vector of the 1nequﬂ2ity con-
straint functions, gw HERY 1
through WK,

hmk Vector of the equality con-
straint functions, Ng s =1

through S™ _  These constraints
link Y™ and X so that,
considering equations 18 through

22.
mk . ymk _ by =
and, hence
mk =~ ymk _ mk) =
h Y f(xmk) =0 (24)

g™, ym™  yectors of lower and upper
limits on the design variables
XTK.  In this application, the

L™ 1imits are needed tg. keep
the diagonal enf 1es of K1 and
the masses nonzero,
positive values, and also to
prevent the off-diagonal entries
of K'J from assuming physically
unrealizable values.

Another important role of the upper and
lower limits is to represent the move limits
needed to preven“iﬁxcessive errors in the linear

extrapolation of C1J and X
Ce Vector of the daugp;er cumulat-
ive constraints, C'J, estimated

by a 1linear extrapolation and
included ;E the cumulative con-
straint C The extrapolation
is accomplished by a linear
portion of the Taylor series
using equation 16 taking into
account that the Xt replaces

the Yﬁg by virtue of the defi-
nition in equation 18, so that:

- - s ~tj
Cld w C1d 4+ 7 92 aumk

dxik
£ (25)
cmk A  cumulative constraint for
SSmk1 representing al)l functions
in the vectors ¢ and

through the KS function intro-
duced in equation 11, so that
C™ = 1/p 1n [2 exp(pgy) + J exp(pClJ)]
. 1 (26)
Finally, owing to equation 24 there are

functional relationships analogous to equation 13
g¥§ended to include the cumulative constraints

g"*

F(Xm, ymk, qnk) (27)

1)

CiJ = f(xmk, ymk | qmk)

(28)

Based on the above definitions, the optimization
problem for the substructure SSmkl is

(29)
min CMK(xmk —ymk - qmk) a)
xmk
hmk =0 b)
Lk ¢ xmk ¢ ymk c)
Lid < gl < ol d)
where
13 e 313 4 9Kk
e mKk
dx
t (30)
The increment Ai;J is
mk = ymkK _ y.mk

dye to equation 30 in which ﬁ?k stands for
YZJ because of equation 18.

The constraints expressed by equation 30 are
introduced to reduce the probability that the
optimization of SSmkl might induce overstepping
of the side constraints in the daughters SSijk.
However, evaluating these constraints for the
quantities approximated by equation 30 does not
guarantee that such overstepping will not occur.
Other means are needed to prevent that as it will
be explained in the discussion of the entire
iterative procedure, It follows that the con-
straints of equation 29d are not essential and
may be omitted. Indeed, there is a strong motiv-
ation to omit them because to do so would allow
limiting the optimum sensitivity analysis to cal-
culation of the objective function derivatives.
This according to reference 5, requires an input
of only the behavior gradients while calculations
of the optimal design variable derivatives
rqu?res input of the gradients and the second
derivatives of behavior - a very substantial
different in the computational cost.

In view of the above, a distinction will be
made between variant 1 and the algorithm that
includes equation 29d and variant 2 in which it
is omitted. For completion of the presentation,
the algorithm description will continue for
variant 1.

The SSmkl optimization produces a constrain-
ed optimum described by a vector I composed
of the minimum value of the cumulative con-
straint, €™, and the optimal vector of the
design variables, %



gk T [Emksimk]r (32)

It is followed by the analysis of sensitivity
with respect to parameters Y' and (™ con-
sidering that the forces Q™ depend on YT
through analysis of SSmk1. The optimum sensi-
tivity derivatives are

LS aCink acmk 3Qmk
G5 L T .
dgmk agmk a;‘mk aka
ik " g L g i .

which by virtue of recursivity of the decompo-
sition are identical to equations 16 and 17,
except the indexes ij being replaced by mk.

The data defined by equations 32, 33 and 34
are carried from SSmkl to its parent SSnlp at the
tevel n - m-l,

Optimization Of The Next Parent Structure

Moving on to the subsftructure SSnip, every-
thing that was stated in the preceding subsection
on optimization of SSmkl applies to SSnlp
literally, provided that: the indexes n, 1, and
p are replaced by another triplet, say, a, p, ¢,
that identifies the parent of SSnlp at the level
a = n-1; and the indexes m, k, and 1 are replaced
by n, 1, and p, For generality of variant 1, one
needs also to extend equation 30 to encompass
fully each line of succession emanating downward
from SSnlp. Beyond these changes, no new concep-
tual elements are introduced, and no additional
definitions or discussion are needed at the junc-
tions between the levels until one arrives at the
top level. Hence, any number of intermediate
levels of substructuring can be inserted, if
physically Jjustified, into a line of succession
connecting the assembied structure on the top to
any most detailed substructures below. This
property characterizes the algorithm as recur-
sive.

Optimization At The Highest Level

The assemhled structure is designated
SS110.  Its optimization problem is similar to
the one described for SSmkl with the following
differences:

1. No parameters are defined solely for the
decomposition purposes.

2. The objective function is the mass of
the assembled structure,

3. There is no need for a cumulative con-
straint although there still is an
option to use it to reduce the number of
constraints that need to be processed.

4, The boundary forces are the external
loads on the assembled structure.

5. There is no need for the equality con-
straints to enforce constancy of the
mass and the boundary stiffness entries.

The definition needed to formulate the top
level optimization problem are identical to those
given for SSmkl, omitting those that do not applv
because of the differences 1 through 5 above.
The remaining definitions are:,

t = 1  through ¥
related to the vectors Y2J by

11 ) desi variables,
X %5ﬁFor of the design Ek
t r ,

KUT oLy,

seee (15)
The mass, Ml g
Mil = f(£11) ) M2J
) (36)
Q! Vector of the external loads,

01}, reduced to the beundary

degrees of freedom according to
the conventional formulation of

sY?structuring; ro= 1 through

R**.

911 Vector of the inequalitf con-
straint functions, ga , im-

posed on the displacements,
buckling critical loads, or
internal forces in SS110; w = 1
through wil,

L1, il pefinition for LMk, ym™  tpat
followed equation 24 applies with
the indexes ij replaced by 2j,
and the indexes mk replaced by
il.

Ce Definition given in conjunction
with equation 25 applies with the
index replacements as above.

Finally, based on the above definitions, the
optimization problem at the top level is

(37)
m1n mi1(x11) a)
x11
<o c)
2 <R3 < e)

where equation 37e is_analogous to equation 29d
with the limits L2, U2J reflecting the
1imits passed upwards through extrapolations of
the type expressed by equation 30 extended
recursively to encompass all the levels below as
mentioned in the subsection on SSnlp.



Unlike all the daughters SSijk, the optimi-
zation of SS110 does not have to be analysed for
the optimum sensitivity.

Iterative Procedure

When the S$S110 optimization is completed,
the entire structure has acquired -a new distri-
bution of stiffness and mass within the move

limits.

Hence, the analysis must be repeated and

followed by a new round of substructure optimi-

zations
gence.

in an iterative manner until conver-
The iterative procedure is composed of

the following steps:

1.

2.

Initialize all cross-sectional dimen-

sions.

perform a substructuring analysis,
including for each substructure at each
level the transformation of the stiff-
ness matrix into the boundary stiffness
matrix, and the transformation of the
forces applied to the interior degrees
of freedom to the forces coinciding with
the boundary degrees of freedom.

Calculations of the behavior derivatives
needed for the ensuing optimizations and
for the optimum sensitivity analyses are
implied in the substructuring analysis.

Perform the operations of optimization
and optimum sensitivity analysis as
defined by equations 10 through 34,

Optimize the assembled structure as
defined by equation 35 through 37.

Repeat step 2 and terminate when: all
constraints g;J are satisfied at all
levels, and M'! has entered a phase of
diminishing returns. Otherwise,
continue.,

Salient Features Of The Algorithm

Taking a perspective view on the multilevel
algorithm with the algorithm for optimization
without decomposition as a reference, the follow-
ing salient features stand out:

1.

Optimization by decomposition replaces
optimization of a single large problem
with optimizations of a multitude of
smaller problems which are isolated from
each other. Obviously, all the sub-
problems at a given level can be
analyzed and optimized simultaneously.

The design variables above the most
detailed substructures are generalized
design variables that enable the design-
er to control the structure behavior by
controlling its stiffness and mass
distributions. '

The structure mass is controlied at the
assembled structure level, The optimi-
zations at the lower levels .are concern-
ed with improving the constraint satis-
faction.

4.

The coupling among the subproblems is
approximated by estimating the changes
in the substructure behavior caused by
the changes in the higher level sub-
structures by means of linear extrapol-
ations. In this respect, the approach
resembles the piecewise linearization
technique known to be effective in many
optimization application (g.g., ref. 3).

The multilevel and corresponding single
level optimizations can be regarded as
equivalent 1in the sense discussed in
(ref. 9, App. B). Although no rigorous,
optimality-condition based proof has as
yet been produced, the equivalence
assertion is supported by all the appli-
cation experience to date. The equival-
ence means that a multilevel optimi-
zation and a single level optimization
of the same problem will arrive at the
same solution, if the problem is
convex. In a non-convex problem,
different solutions are likely because
the two algorithms are different and can
follow different search paths in the
design space.

From the view point of the overall opti-
mization procedure, the operations of
substructure analysis, optimization, and
optimum sensitivity analysis are "black
boxes" whose content can be freely
replaced as long as their input/output
remain as defined 1in the foregoing.
Dissimilar algorithms may be used for
the same operation applied to different
substructures. In particular, although
one would expect a finite element method
to be used throughout for substructuring
analysis, it is not a requirement as
illustrated by the numerical example in
the next section.

The design freedom (equation 8 and 9)
must exist between each parent and
daughter substructures. Normally, that
freedom is assured, if none of the
daughter  substructures is of the
ultimate detail type. This is because
the lack of such freedom would be an
indication that the daughters do not
contribute enough stiffness entries to
the parent to support all of its degrees
of freedom - a sign of incorrect sub-
structuring, Given a design freedom,
there still is the issue of the
completeness of the control a designer
wants to exert over the stiffness and
mass distribution 1in a substructure.
That control may be complete, if all
entries of the substructure boundary
stiffness. matrix and the mass of a
daughter substructure are design
variables in the parent substructure.
The control may be incomplete if one
decides to manipulate as design
variables only a subset of these
quantities leaving the remainder free to
float. The degree of control that one
needs is probably problem-dependent and
involves engineering judgment.



Intuitively, it appears likely that in
many applications an incomplete control,
e.9., control over only the diagonal
entries of the boundary stiffness matrix
and the mass, should be adequate. In
some cases, a complete control may not
be possible physically, e.g., one can
not control all stiffnesses of a gener-
ally anisotropic composite material
plate, if there are not enough plies in
its layup. The completeness of the
stiffness and mass control remains to be
a research issue to be investigated
further.

Numerical Example

The algorithm presented in the preceding
sections was tested on the portal framework
structure that also served as a test case in
reference 9. The structure is illustrated in
Figure 3. In the original construction used in
reference 9 the three beams of the framework had
a thin-wailed, [-shaped cross-section, therefore,
the structure decomposed into two levels:

assembled framework and individual beams. Figure .

3 shows how the construction was modified by
replacing the I-cross-section beams with box
beams. Each box beam is built-up of four thin,
stringer reinforced walls in order to provide a
third decomposition level. Although the struc-
ture appears simple, the experience that has
accumulated since it was introduced in reference
9 shows (references 11 and 12) that it is a chal-
lenging optimization test replete with local
minima,

Testing of the algorithm was carried out by
first optimizing the structure without decompo-
sition in a conventional- manner to establish a
reference and then optimizing it as a three-level
system. Each multilevel optimization was started
from different points in the design space and the
results were evaluated against the reference
results.

Description Of The Test Probiem

The construction, loading, design variables,
constraints and the objective function of the
test structure are: ‘

1. Construction: As shown in Figure 3.
The box beams are symmetric with respect
to the plane of the figure. The
material is an Al-alloy with properties
given in Appendix.

2. Loading: Figure 3 shows the loads
applied to the structure. The
concentrated force and the moment
constitute two, 1independent ' 1loading
cases,

3. The design variables are the cross-
sectional dimensions labeled x8
through X& in Figure 3, DETAIL 8 and
XT through X in Section AA.  The
thicknesses 1, 3, and 4 in a box beam
are equivalent wall thicknesses and
incorporate the "“smeared" stringers so
that the thickness of the sheet metal

itself is not an independent variable
but results from the stringer dimensions
and the equivalent wall thickness. The
total number of the independent design
variables is, considering symmetry of
the beam cross-section: 6 * 3 * 3 + 2 *
3 = 60. The constraints are evaluated
using the analysis tools described in
the next subsection.

4, Constraints: Horizontal translation and
rotation at the loaded corner are limit-
ed to .25 in and 0.005 rd, respectively.
The beams must not buckle in a Euler
column mode., The stiffened plates in
the box beams must not develop stresses
higher than the allowables stated for
the material, and they must not fail by
local buckling. There are also minimum
gage constraints on the thicknesses and
side constraints on the other cross-
sectional dimensions. The cross-
sectional geometrical proportions are
also restricted by such obvious
considerations as the need to keep each
stringer from protruding too far into
the interior of the box beam. The total
number of constraints was 265.

5. The structural material volume is the
objective to be minimized.

Analysis and Design Space Search Tools

Calculation of displacements of the frame-
work joints and the end-forces acting on its
three beams was carried out using a small finite
element program based on the displacement
method. Each beam was modeled as a single beam
element characterized by its cross-sectional area
and bending moment of inertia in the framework's
plane. In this phase of analysis the problem was
treated as two-dimensional and each nodal point
had only three elastic degrees of freedom. The
support points were assumed clamped. The program
was capable of calculating analytically the
static behavior first and second order sensi-
tivity derivatives with respect to the cross-
sectional properties of area and moment of the
inertia,

Analysis of an individual beam under action
of the end-forces was carried out by strength of
materials relationships to obtain distributed
normal and shear edge forces acting on the beam
walls and to compute the corresponding average
stresses. The beam column buckling was analyzed
by a ‘"designer handbook" type- of closed form
formulas provided in reference 13, based on the
classical Eulerian approach.

Analysis of an individual stiffened plate
extracted from the box beam.included calculation
of stress for the given edge-forces, equivalente
Von Mises-Huber stress, and evaluation of several
tocal buckling modes. These modes accounted for
buckling of the sheet metal between the stringer
and the plate edge, columm buckling of the
stringer with a cooperating strip of the sheet
metal, buckling of the stringer web and flange,
and flexural-twist buckling of the stringer
elastically restrained by the sheet metal. A
limited post-buckling analysis in the elastic



range was also included. The buckling analysis

was carried out at the level characterized by
reference 14 and it w>s coded in a program
described in detail in ference 15. Detailed

information on the side constraints on the design
variables and on the geometrical proportions of
the cross-sections is provided in the Appendix.

A general purpose program (ref. 16) based on
the technique of usable-feasible directions was
used for the design space search in the reference

optimization and at every level of the three-
level optimization.
Three-Level Optimization

To establish the reference results, the .

framework was first optimized without decompo-
sition. Then, the multilevel optimization algor-
jthm, variant 2 was applied to the structure
decomposed as shown in Figures 3 and 4 showing
the stiffened panels’ as daughters clustered in
triplets (the fourth wall is symmetric) under a
parent box beam. The beams, in turn, are daugh-
ters of the assembled structure.

The definition of the objective function,
design variables, and constraints for each level

in the decomposition 1is given in Table 1. As
shown in the table, the top level optimization
manipulates the beam extensional and bending

stiffnesses through the cross-sectional area and
bending moment of inertia. By coincidence, the
area controls also the beam volume which contrib-
utes directly to the objective function.

At the middie ‘level, the stiffnesses
expressed by the area and moment of .inertia
become fixed parameters and the variables are the
wall membrane stiffnesses controlled by the
geometrical dimension variables. These vari-
ables, and consequently the membrane stiffnesses
become fixed parameters at the bottom level at
which the ultime*e detail dimensions are engaged
as variables. The equality constraints arise
between the parameters and variables. Owing to
relative simplicity of the expressions involved,
(see Appendix) these constraints are solved
‘explicitly.

Examination of Table 1 in conjunction with
the previous description of the analysis tools
illustrates the point that dissimilar analysis
may be used as needed at different places in a
" decomposition scheme.

The sensitivity analysis of behavior has
been carried out by a single step forward finite
difference technique., The optimum sensitivity
analysis was based on the algorithm given in
reference 5.

Results And Remarks On The Method.Performancé

Figures 5, 6, and 7 show a sample of results
obtained when starting from with and without
decomposition., To assure comparability of the
results the starting points for both methods are
the same. The normalized plots illustrate for
each of the three different starting points, the
objective function, a selected individual
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constraint, and a cumulative constraint contain-
ing the above individual constraint as they
varied over the iterations in the optimization
without decomposition and cycles in the three-
level optimization. An iteration is defined in
the optimization without decomposition as a
usable-feasible directions iteration. A cycle is
defined as one execution of the series of steps
listed in the iterative procedure definition in
the previous section,

The results verified that the multilevel
algorithm was capable of finding a feasible
design having an objective function close to and,
in some cases, lower then the reference optimi-
zation without decomposition, As in reference 9,
differences up to 72.1% were observed among the
detailed design variables obtained by the two
methods. However, these differences were no
larger than those observed by comparing the
designs obtained without decomposition starting
from different initial design points. Therefore,
these differences can be attributed to the
problem non-convexity.

The volume of the data needed to describe
the optimization results for the test structure
is so voluminous that only a sample for one opti-
mized case corresponding to Figure 6 is displayed
in Table 2 to show dimensions of the optimized
cross-sections,

The objective function minimum in the
three-level optimization falling below the value
obtained by the optimization without the decompo-
sition was an unexpected result that occurred in
several tests two of which are illustrated in
Figures 5 and 6. Examination of the detailed
numerical data suggested that these particular
results were caused by both the different search
path taken and by the larger number of con-
straints that the wusable-feasible directions
search algorithm had to process simultaneously in
the optimization without decomposition. The
algorithm implemented as described in reference
16 does not have a rigorous, Kuhn-Tucker based
termination criterion, Instead, it terminates by
a "practical" criterion of the diminishing
returns in the value of the objective function.
The criterion numerical tolerance was set the
same for both methods. Proceeding from one con-
straint boundary to the next, as the usable-
feasible directions algorithm does, the objective
function reductions measured between the consecu-
tive iterations tends to fall Dbelow that
criterion prematurely, if there are many closely
spaced constraint boundaries. In contrast, the
multilevel scheme incorporates a piecewise
1inearization that inherently tends to produce
significant increments of the objective function
from one cycle to the next and tend to proceed
further toward the theoretical constrained
optimum than the reference method. o

The graphs in Ffigures 5, 6, and 7 have a
jagged appearance for both methods which is a
characteristics of the usable-feasible directions
search algorithm, amplified in the multilevel
optimization by the extrapolation errors. How-
ever, these errors have never become excessive
and the daughter substructure reactions to the
changes in the parent design were effectively



predicted by the optimum sensitivity deriva-
tives. In at least one case these predictions
enabled the optimization at the middle level to
remove the <constraint violations at a bottom
level substructure without any change to that
substructure sizing.

Regarding the computational efficiency, it
was not the purpose to demonstrate improvements
of that efficiency and neither the reference nor
the multilevel optimization procedures were honed
for best computational performance in their
implementations. The test case was compu-
tationally too small anyway to permit drawing
conclusions as to the computational efficiency of
any method. The only observation in this regard
is that the amount of computational labor in one
cycle tends to be less than in one iteration.
Therefore, the total numbers of cycles and iter-
ations should not be compared to evaluate the
muitilevel method efficiency. The main advantage
of the multilevel method stems from its compati-
bility with the distributed computing technology.

Conclusions

Af,algorithm has been described for perform-
ing structural optimization by decomposing an
optimization problem for an entire structure into
a set of smaller subproblems., Each subproblem
correspands to a substructure in a general, sub-
structuring analysis based on many levels of
nested substructures. The optimization sub-
problems remain coupled by means of the optimum
sensitivity analysis that generates derivatives
of optimum solution with respect to constant
parameters. These derivatives quantify the rate
of the behavior change in a substructure opti-
mized for constant inputs received from its
governing, higher order substructure relative to
the rate of change of these inputs. This quanti-
fication informs the optimizer modifying the
higher order substructure about the effect its
action will have on the subordinated substruc-
tures. The algorithm is intrinsically compatible
with distributed computing because the sub-
problems are isolated and can be processed in
parallel,

Testing on a framework structure made up of
box beams that decomposes into a three-level
pyramid of 13 subproblems showed that the optimi-
zation algorithm performed as expected or
better. Such difficulties as have been encoun-
tered were not of the computational nature but
were caused by complexity of data handling by the
conventional FORTRAN means of named files and
COMMON blocks. In fact, from the programmer's
viewpoint this was a data-dominated problem and a
conclusion was drawn that to proceed with a
larger scale applications, with more levels and,
particularly, with more engineering disciplines
involved in the analysis would require systematic
means of data handling such as those provided by
mg?ern data base management systems {e.g., ref.
17).

Comparison against a reference optimization
without decomposition of the same structure
demonstrated the validity and effectiveness of
the multilevel optimization algorithm.
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Satisfactory testing of the three-level
optimization is seen as verifying an entirely
general, -multilevel algorithm because the formu-
lation is recursive, and extensjon beyond three

levels introduces no conceptually and qualitat-
ively new elements into the decomposition
schene. The reported implementation is, there-

fore, regarded as a stage in the development of a
mltilevel, multidisciplinary optimization scheme
applicable to engineering systems such as air-
craft, due to the generality of the basic con-
cepts underlying the algorithm.
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APPENDIX: Details. of the Formulation

-Additional or Redefined Nomenclature

Ay

a

Z-stiffener cross-sectional area
l-stiffener leg cross-sectional area

X3 or X%

Moment of inertia about the axis
parallel to the webs

Move limit percentage
Beam length

Bending moment

Resultant axial force
Axial force

First moment of the area

Thickness-to-length ratio of the
z-stiffeners legs

Section modulus

Slenderness (equation A10)
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t Smeared thickness

v Shearing force

y Centroidal distance to the extreme fiber
] Normal stress

T Shearing stress

Miscellaneous Information

The material was 6062-T62 aluminum defined
by Table 48, reference (13). The box beams were
assumed to be singly symmetric, allowing only one
web to be modelled. The cross-sectional area of
the z-stiffener was assumed to be a constant 10%
(r = 0.9) of the smeared area of the flanges and
5% (r = 0.95) of the webs. The panels were
assumed to be braced for local buckling every 24
inches.

Details of the Optimization Without Decomposition

Six design variables were used to model each
z-stiffener., Six more design variables were used

for the beam widths, X3, and heights, Xi. The

other beam dimensions were calculated by
el eBl kg,
t = A,/[b(1.0 - r)] A2

where b = x;' for flange panels or x';' for web
panels., Beam section properties were calculated
from the dimensions. A finite element program
was used to analyze the structure for displace-
ments and end forces for the two independent 1oad
cases, 50,000 Ibs. and 20 x 10% lb-in,

Four displacement constraints were computed,
two for each load case:

Dj = & for each load case, j = 1,2
¢j = 0.25 in, 3
Dj = o for each load case, j = 1,2
¢j = 0.005 rad. "
gj *® DJ'/CJ’ - 1.0 i=1,4 A5

For both loading cases, the stresses were
evaluated at six points. Bending stresses were
calculated at ‘the bottom and top of both ends and
shear stresses were evaluated at the neuytral axis
at both ends.

A6
.

When evaluating the stress constraints, a factor
of safety was applied

A7

Dj = 1.5¢

cj * 26,000 psi for tension A8




Dy =15 ' T |
cj = 15,000 psi A9

For compression, the allowable stress was reduced
to prevent buckling. The compression allowable
was computed by

s = Sl/Iy ALO

For s < 40 ¢j = 26,000 psi

1,000(27.4 - 0.22/3)psi

For 40 < s < 1810 Cj
1810 (18040)/s psi

For s < 1810 ¢j

All

The function for the compression allowable was
patterned after Table 4b of the ASCE specifi-

cation for 6062-T6 aluminum in reference 13. The
36 stress constraints were
g; = Dj/cj - 1.0 i=95, 40 AL2

The end moments were converted to couples
and summed with the axial force by

I VAt ) AL3

The resultant forces on both ends of the beam for
both load cases were .applied as four separate
loadings. The shears and resultant forces for
both flanges were applied to the webs, generating
eight loadings. Thirteen constraints for each
load case were evaluated to select #he thirteen
maximum values. This approach resulted in 117
constraints for all nine panels.

Additional geometric  constraints were
applied to the z-stiffener in the following forms
ay = xBxB, a, = xBx8, a; = 80k - kB B
Al4
D. = s
J T
¢j = 0.1A, ALS
gi = Dj/cj -1 i = 158, 184 AL6
Ry = X33, Ry = BB, Ry = xE/d AL7
D. gR.
J J
Cj 0.5 AL8
gi *® Dj/cj - 1.0 i =185, 211 AL9

The z-stiffener dimensions were also constrained
to fit inside the box beam by

B

D; = X3, xB, xB for flanges

¢; = o - axfy/a ‘
A20

13

Dj = XB, X%, XE for webs
es = 0 - 2l
. A21
Dj = XB, X%, X% for flange
c. = x4
J A22
D,® X8, x8, x8 for webs
M
c; = Xg/4
J A23

9 = DJ/CJ - 1.0 i= 212, 265

A24

Upper and lower. bounds on the design vari-
ables were

5.0 < X3, ¥ < 100.0 for a1l cases

A25

0.0625 < x8, xB, x8 < 2.5

1.0 < XE, XE < 25.0 for case 1
8

115 < 8 <250 a26

0.0625 < x5, 38, x8 < 1.0

1.0 < %2, 8 < 10.0 for case 2 and 3
8

1125 < 2 <1000 A27

The objective function, F, was defined as

the framework material volume,
3
F=T1 Al
i=1 A28

Details of the Multilevel Optimization

Details of the bottom level formulation have
been given in the preceding section. At the

middle level Ly and Ui were defined for X3
and i% by equaticn (A26). For xT, 3 and X,

BLy and U wege calculated by replacing  Xj
with Ui and Lj in equation {Al) to calculate
Az, max and Az min, respectively. Then
M_LA i
Li s NZ, Mn
bpax(1-r) A29
M_.A
Uy = 22, Mmax
Bmin(i-r) A30

where bpin = 5 and bpyy = 100 consistent with
equation (kzs).

The more restrictive of WM and M or the
move limits, calculated by



U,L - M
X e L) A3l B, = 20x"xM(s, +Mx’f/2)(a2 +1/2)
L = 0,075 432 + X X5(By - §3]{12)(B§ ;4 1/2)
+ Ble(A - X1X2 - x2X3)] A36
were chosen as the cycle's upper and lower
DoundS. 35 ; XMXM(B]_ + xl/z)z + XM M(Bl - X3/2)
M MM f 37,1
XT, Xg. and x? were used as design variables + By(A - Xlx - XpXg) + Kol 1) + (X 3) iz -A37
while Xr and XQ were calculated as dependent '
variables to satisfy equation (15) by
Me (M My 2)x W = 0.5(-8, + /B2 - 4B,85)/8, .
By = 0.5X,[(X3)% - (X])2)/A A33 :
. XM= 0.s(a - 0 - i 239
Bz = 0-5X2[X3 - Xl]/A A34
At the top level, the more limits were defined as
- [A - M (X1 - )]/12 ' XM M(Bz v 1/2)2 in equations A31 and A32.
+ x’;x’g(az - 1/2) 2y Bz(a - xS -k

s et st g T e e

Table 1. Quantities Defined for the Multilevel Test Case Optimization

T0P LEyEL
OBJEdTIVE: The framework material volume
DESIGN VARIABLES: A and I of the -beams

CONSTRAINTS: Displacements of the loaded corner and Ce for th

e beams

MIDDLE LEVEL

and Ce for the walls.

DESIGN VARIABLES: Wall membrane stiffness contributing to the
axial and bending stiffnesses controlled th

CONSTRAINTS: Equality-beam cross-sectional area and moment of

OBJECTIVE: Cumulative constraint C representing the column buckling

the dimensions shown in fig. 3, section A-A.

beam
rough

inertia

BOTTOM LEVEL

OBJECTIVE: Cumulative constraint C representing a set of stre
local buckling constraints of the wall.

'DES[@N‘!QBIABLES: Cross-sectional dimensions shown in fig. 3

CONSTRAINTS: Inequality - minimum gages, geometrical proport1
geometrical realizability.

Equality - membrane stiffnesses for tension-comp
and bending in of the wall in its own plane.

ss and

DETAIL 8

ons, and

ression
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Table 2. REPRESENTATIVE RESULTS

BEAM 1 BEAM 2 ' BEAM 3

SINGLE [MULTI- SINGLE [MULTI- SINGLE [MULTI-
INITIAL{LEVEL JLEVEL |INITIAL|LEVEL |LEVEL |INITIAL|LEVEL |LEVEL
VALUES |FINAL |[FINAL [VALUES |FINAL [FINAL (VALUES |[FINAL |FINAL

VALUES [VALUES VALUES |VALUES VALUES |VALUES
F(in3)]64347.5(57127.0]46060.5(64347.5|57127.0[46060.5|64347.5|57127.0] 46060.5
A(in2)|  42.7|  42.1| 36.3| 190.0| 161.8| 127.7| 7.7\  s5.2| 46.1
[(in%)( 3903.5| 3894.0| 3365.0{31088.1{41370.0(39550.0| 5528.1| 6169.0| 4621.0

Spay | 0-092 |-0.097 | 0.044 | 0.092 |-0.097 | 0.0438| 0.0917|-0.097 | 0.044
oM - 0.006 | - - Je0uas7 | - - ]-0.067
xin)| 1.620 1.572 | 0.971 0.816 |- 0.791 0.650
XH(iny[10.0 | 9.997 | 8.524 [35.0 [34.3¢ [31.32 |20.0 [19.96 |18.57
xftim| 075~ 0.831 | 1.3 1.456 | 0.88 0.787
iny| 0.423 0.354 | 1.727 0.677 | 0.518 0.420
X¥(in)|22.5 |22.65 |22.35 |32.0 [38.71 |a1.74 |22.5 |24.15 |23.08
8 - - Jo.wo2e | - - f-0.182 | - - |-0.001

()| 0.1 |01 | 0.089 | 0.8 |o0.845 | 0.851 | 0.3 | 0.297 | 0.383
xBimyl 0.1 o1 | o.086 | 0.25 | 0.263 | 0.325 | 0.4 | 0.396 | 0.176
x3(in){ 0.4 | 0.398 | 0.358 | 0.8 | 0.845 | 0.851 | 0.3 | 0.297 | 0.383
XBiim| 1.0 |10 |10 |20 |2130] 2176 2.0 | 1.976 | 1.627
X3im{ 1.0 [ 1.0 | 1.006 {20 | 213 | 2176 2.0 | 1.976 | 1.627

~o

Xg(in) 3.0 2,988 1 2.941 | 7.0 7.497 | 2.176 | 2.0 1.976 | 1.627

cB - - | 0.081 - - |-0.227 . - |-0.020

X?(in) 0.3 0.299 | 0.35 0.5 0.495 | 0.285 | 0.175 { 0.174 { 0.072
Xg(1n) 0.3 0.296 | 0.160 | 0.4 0.371 { 0.305 | 0.175 | 0.174 | 0.092
Xg(in) 0.3 0.299 | 0.321 | 0.5 0.495 | 0.165 | 0.5 0.491 | 0.491
XE(in) 1.0 1.0 1.272 } 1.0 1.0 1.0 2.0 1.987 | 1.804
Xg(in) 1.0 1.0 1.240 | 1.0 1.0 1.721 | 2.0 1.963 | 1.667
Xg(in) 4.0 3.934 | 3.420 | 7.0 6.404 | 7.755 | 2.0 1.987 | 2.523

cB - - -0 - - |-0as9 | - - |-0.144

Xg(in) 0.062 | 0.062 | 0.086 | 0.3 0.285 | 0.176 | 0.062 | 0.064 0.062
Xa{in)| 0.1 0.099 | 0.063 | 0.625 | 0.513 | 0.172 | 0.062 | 0.064 | 0.069

gg(in) 0.175 | 0.173 | 0.155 | 0.2 0.187 | 0.172 | 0.35 0.338 | 0.229
XE(1n) 2.0 1.986 | 1.545 | 2.0 1.856 | 1.940 | 1.0 1.0 1.0
Xg(in) 1.0 1.0 1.004 | 3.0 2.784 | 2.962 | 1.0 1.0 1.016

Xg(in) 2.0 1.977 | 1.950 | 3.0 2.343 | 2.851 | 3.0 2.938 | 3.131
Iterations 7 22-23 7 22-23 7 22-23
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