44 research outputs found

    S2P intramembrane protease RseP degrades small membrane proteins and suppresses the cytotoxicity of intrinsic toxin HokB

    Get PDF
    The site2-protease (S2P) family of intramembrane proteases (IMPs) is conserved in all kingdoms of life and cleaves transmembrane proteins within the membrane to regulate and maintain various cellular activities. RseP, an Escherichia coli S2P peptidase, is involved in the regulation of gene expression through the regulated cleavage of the two target membrane proteins (RseA and FecR) and in membrane quality control through the proteolytic elimination of remnant signal peptides. RseP is expected to have additional substrates and to be involved in other cellular processes. Recent studies have shown that cells express small membrane proteins (SMPs; single-spanning membrane proteins of approximately 50–100 amino acid residues) with crucial cellular functions. However, little is known about their metabolism, which affects their functions. This study investigated the possible RseP-catalyzed cleavage of E. coli SMPs based on the apparent similarity of the sizes and structures of SMPs to those of remnant signal peptides. We screened SMPs cleaved by RseP in vivo and in vitro and identified 14 SMPs, including HokB, an endogenous toxin that induces persister formation, as potential substrates. We demonstrated that RseP suppresses the cytotoxicity and biological functions of HokB. The identification of several SMPs as novel potential substrates of RseP provides a clue to a comprehensive understanding of the cellular roles of RseP and other S2P peptidases and highlights a novel aspect of the regulation of SMPs

    Toward a unified explanation of the cause of memory facilitation: A review and an experiment

    No full text

    The influence of idiosyncratic and redundant attributes which are not definite cues within categorization tasks

    No full text
    corecore