20 research outputs found

    Advances in Polyynes to Model Carbyne

    No full text
    ConspectusThe formation and study of molecules that model the sp-hybridized carbon allotrope, carbyne, is a challenging field of synthetic physical organic chemistry. The target molecules, oligo- and polyynes, are often the preferred candidates as models for carbyne because they can be formed with monodisperse lengths as well as defined structures. Despite a simple linear structure, the synthesis of polyynes is often far from straightforward, due in large part to a highly conjugated framework that can render both precursors and products highly reactive, i.e., kinetically unstable. The vast majority of polyynes are formed as symmetrical products from terminal alkynes as precursors via an oxidative, acetylenic homocoupling reaction based on the Glaser, Eglinton–Galbraith, and Hay reactions. These reactions are very efficient for the synthesis of shorter polyynes (e.g., hexaynes and octaynes), but yields often drop dramatically as a function of length for longer derivatives, usually starting with the formation of decaynes. The most effective approach to circumvent unstable precursors and products has been through the incorporation of sterically demanding end groups that serve to “protect” the polyyne skeleton. This approach was arguably identified in the early 1950s by Bohlmann and co-workers with the synthesis of tBu-end-capped polyynes. During the next 50 years, a polyyne with 14 contiguous alkyne units remained the longest isolated derivative until 2010, when the record was extended to 22 alkyne units. The record length was broken again in 2020, when a polyyne consisting of 24 alkynes was isolated and characterized. Beyond polyynes, there have been several reports describing the potential synthesis of carbyne, but conclusive characterization and proof of structure have been tenuous. The sole example of synthetic carbyne arises from synthesis within carbon nanotubes, when chains of thousands of sp carbon atoms have been linked to form polydisperse samples of carbyne. Thus, model compounds for carbyne, the polyynes, remain the best means to examine and predict the experimental structure and properties of this carbon allotrope.This Account will discuss the general synthesis of polyynes using homologous series of polyynes with up to 10 alkyne units as examples (decaynes). The limited number of specific syntheses of series with longer polyynes will then be presented and discussed in more detail based on end groups. The monodisperse polyynes produced from these synthetic efforts are then examined toward providing our best extrapolations for the expected characteristics for carbyne based on 13C NMR spectroscopy, UV–vis spectroscopy, X-ray crystallography, and Raman spectroscopy

    Enhancing the Dispersibility of TiO<sub>2</sub> Nanorods and Gaining Control over Region-Selective Layer Formation

    No full text
    We demonstrate that the dispersibility and reactivity of core–shell TiO<sub>2</sub> nanorods (NRs) can be controlled significantly through functionalization with a combination of ligands based on phosphonic acid derivatives (PAs). Specifically, a glycol based PA allows dispersion of the NRs in methanol (MeOH). On the other hand, incorporating an alkyne terminated PA in the ligand shell of the NRs allows for a copper-catalyzed alkyne–azide cycloaddition (CuAAC) reaction with an azide-patterned aluminum oxide (AlO<sub><i>x</i></sub>) substrate and forms a region-selectively deposited film of NRs. We clearly demonstrate that the quality of the NR films correlates strongly with the stability of the NR dispersions in the reaction medium. In particular, tuning the concentration of alkyne PA in the ligand shell inhibits aggregation of the NRs on the substrate, while reactivity for the CuAAC reaction is maintained. The surface coverage with NRs fits the Langmuir model. This study illustrates that surface functionalization of AlO<sub><i>x</i></sub> substrates can be effectively and conveniently controlled through enhancing the dispersibility of the NRs using mixed ligand shells

    Addition Reactions of Olefins to Asphaltene Model Compounds

    No full text
    Addition reactions have been proposed as a significant pathway for coke formation in the liquid-phase cracking of heavy oils and bitumens. In order to study the kinetics of olefin addition in the liquid phase, two alkyl-bridged aromatic compounds, with molecular weights of 899.70 g/mol and 1127.99 g/mol, were thermally cracked with 1-hexadecene, 1-octadecene, or <i>trans</i>-stilbene, in a batch microreactor at 375–430 °C for 15 to 45 min. Reaction products were analyzed by gas chromatography, high-performance liquid chromatography, matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS), and proton nuclear magnetic resonance (<sup>1</sup>H NMR) spectroscopy. Kinetic data indicate a first-order reaction in model compound concentration, with energetics consistent with a free-radical chain mechanism. Tandem MS/MS and <sup>1</sup>H NMR spectra of the products are consistent with olefin addition through the alkyl bridge of the bridged aromatics. The results imply that (i) the addition products are able to abstract hydrogen to give detectable products faster than they decompose, and (ii) the addition products can react even more readily than the parent compounds

    Laser Desorption Mass Spectrometry of End Group-Protected Linear Polyynes: Evidence of Laser-Induced Cross-Linking

    No full text
    End group-protected linear polyynes of composition Tr*–(CC)<sub><i>n</i></sub>–Tr* (with Tr* representing the super trityl group and <i>n</i> = 2, 4, 6, 8, 10) and <i>t</i>Bu–(CC)<sub>6</sub>–<i>t</i>Bu (with <i>t</i>Bu being the tertiary butyl group) have been studied by laser desorption ionization (LDI) time-of-flight (ToF) mass spectrometry. <i>t</i>Bu-terminated polyyne molecules show considerably higher stability during laser activation than Tr*-end-capped polyyne molecules. A key feature is the abundant formation of oligomeric species upon laser activation. Tandem mass spectrometry reveals strong bonding within the oligomers which indicates cross-linking of the former polyynes within the oligomers. The process is more abundantly occurring and less energy demanding than the laser-induced coalescence of C<sub>60</sub>. Cross-linking is more efficient with the smaller end group (<i>t</i>Bu), and larger oligomers are formed when the chain length of the polyyne increases, both a result of enhanced interaction of the triple bonds in neighboring chains. The presence of the matrix molecules in matrix-assisted (MA)­LDI hinders the polyyne interaction, and oligomer formation is markedly reduced

    Synthesis and Properties of Isomerically Pure Anthrabisbenzothiophenes

    No full text
    The synthesis of three heptacyclic heteroacenes is described, namely anthra[2,3-<i>b</i>:7,6-<i>b</i>′]bis[1]benzothiophenes (ABBTs). A stepwise sequence of aldol reactions provides regiochemical control, affording only the <i>syn</i>-isomer. The ABBTs are characterized by X-ray crystallography, UV–vis absorption, and emission spectroscopy, as well as cyclic voltammetry. Field effect transistors based on solution-cast thin films of ABBT derivatives exhibit charge-carrier mobilities of as high as 0.013 cm<sup>2</sup>/(V s)

    Synthesis and Properties of Isomerically Pure Anthrabisbenzothiophenes

    No full text
    The synthesis of three heptacyclic heteroacenes is described, namely anthra[2,3-<i>b</i>:7,6-<i>b</i>′]bis[1]benzothiophenes (ABBTs). A stepwise sequence of aldol reactions provides regiochemical control, affording only the <i>syn</i>-isomer. The ABBTs are characterized by X-ray crystallography, UV–vis absorption, and emission spectroscopy, as well as cyclic voltammetry. Field effect transistors based on solution-cast thin films of ABBT derivatives exhibit charge-carrier mobilities of as high as 0.013 cm<sup>2</sup>/(V s)

    Scalable, Chromatography-Free Synthesis of Alkyl-Tethered Pyrene-Based Materials. Application to First-Generation “Archipelago Model” Asphaltene Compounds

    No full text
    In this paper, we report a highly efficient, scalable approach to the total synthesis of conformationally unrestricted, electronically isolated arrays of alkyl-tethered polycyclic aromatic chromophores. This new class of modular molecules consists of polycyclic aromatic “islands” comprising significant structural fragments present in unrefined heavy petroleum, tethered together by short saturated alkyl chains, as represented in the “archipelago model” of asphaltene structure. The most highly branched archipelago compounds reported here share an architecture with first-generation dendrimeric constructs, making the convergent, chromatography-free synthesis described herein particularly attractive for further extensions in scope and applications to materials chemistry. The syntheses are efficient, selective, and readily adaptable to a multigram scale, requiring only inexpensive, “earth-abundant” transition-metal catalysts for cross-coupling reactions and extraction and fractional crystallization for purification. This approach avoids typical limitations in cost, scale, and operational practicality. All of the archipelago compounds and synthetic intermediates have been fully characterized spectroscopically and analytically. The solid-state structure of one archipelago model compound has been determined by X-ray crystallography

    Synthesis of Polyyne Rotaxanes

    No full text
    Active-metal templating has been used to synthesize rotaxanes consisting of a phenanthroline-based macrocycle threaded around a C8, C12, or C20 polyyne chain. The crystal structure of the C12 rotaxane has been determined. In the rhenium(I) carbonyl complex of this rotaxane, with Re(CO)<sub>3</sub>Cl coordinated to the phenanthroline macrocycle, the proximity of the polyyne chain quenches the luminescence of the rhenium. These rotaxanes offer a new approach to controlling the environment and interactions of a polyyne chain

    Synthesis of Polyyne Rotaxanes

    No full text
    Active-metal templating has been used to synthesize rotaxanes consisting of a phenanthroline-based macrocycle threaded around a C8, C12, or C20 polyyne chain. The crystal structure of the C12 rotaxane has been determined. In the rhenium(I) carbonyl complex of this rotaxane, with Re(CO)<sub>3</sub>Cl coordinated to the phenanthroline macrocycle, the proximity of the polyyne chain quenches the luminescence of the rhenium. These rotaxanes offer a new approach to controlling the environment and interactions of a polyyne chain

    Polyyne Rotaxanes: Stabilization by Encapsulation

    No full text
    Active metal template Glaser coupling has been used to synthesize a series of rotaxanes consisting of a polyyne, with up to 24 contiguous <i>sp-</i>hybridized carbon atoms, threaded through a variety of macrocycles. Cadiot–Chodkiewicz cross-coupling affords higher yields of rotaxanes than homocoupling. This methodology has been used to prepare [3]­rotaxanes with two polyyne chains locked through the same macrocycle. The crystal structure of one of these [3]­rotaxanes shows that there is extremely close contact between the central carbon atoms of the threaded hexayne chains (C···C distance 3.29 Å vs 3.4 Å for the sum of van der Waals radii) and that the bond-length-alternation is perturbed in the vicinity of this contact. However, despite the close interaction between the hexayne chains, the [3]­rotaxane is remarkably stable under ambient conditions, probably because the two polyynes adopt a crossed geometry. In the solid state, the angle between the two polyyne chains is 74°, and this crossed geometry appears to be dictated by the bulk of the “supertrityl” end groups. Several rotaxanes have been synthesized to explore gem-dibromoethene moieties as “masked” polyynes. However, the reductive Fritsch–Buttenberg–Wiechell rearrangement to form the desired polyyne rotaxanes has not yet been achieved. X-ray crystallographic analysis on six [2]­rotaxanes and two [3]­rotaxanes provides insight into the noncovalent interactions in these systems. Differential scanning calorimetry (DSC) reveals that the longer polyyne rotaxanes (C16, C18, and C24) decompose at higher temperatures than the corresponding unthreaded polyyne axles. The stability enhancement increases as the polyyne becomes longer, reaching 60 °C in the C24 rotaxane
    corecore