Scalable, Chromatography-Free Synthesis of Alkyl-Tethered Pyrene-Based Materials. Application to First-Generation “Archipelago Model” Asphaltene Compounds

Abstract

In this paper, we report a highly efficient, scalable approach to the total synthesis of conformationally unrestricted, electronically isolated arrays of alkyl-tethered polycyclic aromatic chromophores. This new class of modular molecules consists of polycyclic aromatic “islands” comprising significant structural fragments present in unrefined heavy petroleum, tethered together by short saturated alkyl chains, as represented in the “archipelago model” of asphaltene structure. The most highly branched archipelago compounds reported here share an architecture with first-generation dendrimeric constructs, making the convergent, chromatography-free synthesis described herein particularly attractive for further extensions in scope and applications to materials chemistry. The syntheses are efficient, selective, and readily adaptable to a multigram scale, requiring only inexpensive, “earth-abundant” transition-metal catalysts for cross-coupling reactions and extraction and fractional crystallization for purification. This approach avoids typical limitations in cost, scale, and operational practicality. All of the archipelago compounds and synthetic intermediates have been fully characterized spectroscopically and analytically. The solid-state structure of one archipelago model compound has been determined by X-ray crystallography

    Similar works

    Full text

    thumbnail-image

    Available Versions