4 research outputs found

    One Peptide for Them All: Gold Nanoparticles of Different Sizes Are Stabilized by a Common Peptide Amphiphile

    Get PDF
    The functionalization of gold nanoparticles (GNPs) with peptidic moieties can prevent their aggregation and facilitate their use for applications both in vitro and in vivo. To date, no peptide-based coating has been shown to stabilize GNPs larger than 30 nm in diameter; such particles are of interest for applications including vaccine development, drug delivery, and sensing. Here, GNPs with diameters of 20, 40, and 100 nm are functionalized with peptide amphiphiles. Using a combination of transmission electron microscopy, UV–vis spectroscopy, and dynamic light scattering, we show that GNPs up to 100 nm in size can be stabilized by these molecules. Moreover, we demonstrate that these peptide amphiphiles form curvature-dependent, ordered structures on the surface of the GNPs and that the GNPs remain disperse at high-salt concentrations and in the presence of competing thiol-containing molecules. These results represent the development of a peptide amphiphile-based coating system for GNPs which has the potential to be beneficial for a wide range of biological applications, in addition to image enhancement and catalysis.Supramolecular & Biomaterials Chemistr

    Liquid-liquid phase separation during amphiphilic self-assembly.

    No full text
    Contains fulltext : 215977.pdf (publisher's version ) (Closed access)The self-assembly of amphiphilic molecules in solution is a ubiquitous process in both natural and synthetic systems. The ability to effectively control the structure and properties of these systems is essential for tuning the quality of their functionality, yet the underlying mechanisms governing the transition from molecules to assemblies have not been fully resolved. Here we describe how amphiphilic self-assembly can be preceded by liquid-liquid phase separation. The assembly of a model block co-polymer system into vesicular structures was probed through a combination of liquid-phase electron microscopy, self-consistent field computations and Gibbs free energy calculations. This analysis shows the formation of polymer-rich liquid droplets that act as a precursor in the bottom-up formation of spherical micelles, which then evolve into vesicles. The liquid-liquid phase separation plays a role in determining the resulting vesicles' structural properties, such as their size and membrane thickness, and the onset of kinetic traps during self-assembly.1 april 201

    A roadmap for poly(ethylene oxide)-block-poly-ε-caprolactone self-assembly in water : prediction, synthesis, and characterization and characterization

    Get PDF
    Numerical self-consistent field (SCF) lattice computations allow a priori determination of the equilibrium morphology and size of supramolecular structures originating from the self-assembly of neutral block copolymers in selective solvents. The self-assembly behavior of poly(ethylene oxide)-block-poly-ε-caprolactone (PEO-PCL) block copolymers in water was studied as a function of the block composition, resulting in equilibrium structure and size diagrams. Guided by the theoretical SCF predictions, PEO-PCL block copolymers of various compositions have been synthesized and assembled in water. The size and morphology of the resulting structures have been characterized by small-angle X-ray scattering, cryogenic transmission electron microscopy, and multiangle dynamic light scattering. The experimental results are consistent with the SCF computations. These findings show that SCF is applicable to build up roadmaps for amphiphilic polymers in solution, where control over size and shape are required, which is relevant, for instance, when designing spherical micelles for drug delivery system
    corecore