78 research outputs found

    Dietary calcium decreases but short-chain fructo-oligosaccharides increase colonic permeability in rats

    Get PDF
    An increased intestinal permeability is associated with several diseases. Nutrition can influence gut permeability. Previously, we showed that dietary Ca decreases whereas dietary short-chain fructo-oligosaccharides (scFOS) increase intestinal permeability in rats. However, it is unknown how and where in the gastrointestinal tract Ca and scFOS exert their effects. Rats were fed a Western low-Ca control diet, or a similar diet supplemented with either Ca or scFOS. Lactulose plus mannitol and Cr-EDTA were added to the diets to quantify small and total gastrointestinal permeability, respectively. Additionally, colonic tissue was mounted in Ussing chambers and exposed to faecal water of these rats. Dietary Ca immediately decreased urinary Cr-EDTA excretion by 24 % in Ca-fed rats compared with control rats. Dietary scFOS increased total Cr-EDTA permeability gradually with time, likely reflecting relatively slow gut microbiota adaptations, which finally resulted in a 30 % increase. The lactulose: mannitol ratio was 15 % higher for Ca-fed rats and 16 % lower for scFOS-fed rats compared with control rats. However, no dietary effect was present on individual urinary lactulose and mannitol excretion. The faecal waters did not influence colonic permeability in Ussing chambers. In conclusion, despite effects on the lactulose: mannitol ratio, individual lactulose values did not alter, indicating that diet did not influence small-intestinal permeability. Therefore, both nutrients affect permeability only in the colon: Ca decreases, while scFOS increase colonic permeability. As faecal water did not influence permeability in Ussing chambers, probably modulation of mucins and/or microbiota is important for the in vivo effects of dietary Ca and scFOS

    An Infant Formula with Partially Hydrolyzed Whey Protein Supports Adequate Growth and Is Safe and Well-Tolerated in Healthy, Term Infants: A Randomized, Double-Blind, Equivalence Trial

    Get PDF
    The current study evaluates the safety and tolerance of a partially hydrolyzed whey protein-based infant formula (PHF) versus an in intact cow's milk protein formula (IPF). Breastfed infants were included as a reference group. In a multi-country, multicenter, randomized, double-blinded, controlled clinical trial, infants whose mothers intended to fully formula feed were randomized to PHF (n= 134) or IPF (n= 134) from <= 14 days to 17 weeks of age. The equivalence analysis of weight gain per day within margins of +/-3 g/d (primary outcome), the recorded adverse events, growth and gastro-intestinal tolerance parameters were considered for the safety evaluation. Equivalence of weight gain per day from enrolment until 17 weeks of age was demonstrated in the PHF group compared to the IPF group (difference in means -1.2 g/d; 90% CI (-2.42; 0.02)), with estimated means (SE) of 30.2 (0.5) g/d and 31.4 (0.5) g/d, respectively. No significant differences in growth outcomes, the number, severity or type of (serious) adverse events and tolerance outcomes, were observed between the two formula groups. A partially hydrolyzed whey protein-based infant formula supports adequate infant growth, with a daily weight gain equivalent to a standard intact protein-based formula; it is also safe for use and well-tolerated in healthy term infants

    Neuro-immune interactions in inflammatory bowel disease and irritable bowel syndrome: Future therapeutic targets

    No full text
    The gastro-intestinal tract is well known for its largest neural network outside the central nervous system and for the most extensive immune system in the body. Research in neurogastroenterology implicates the involvement of both enteric nervous system and immune system in symptoms of inflammatory bowel disease and irritable bowel syndrome. Since both disorders are associated with increased immune cell numbers, nerve growth and activation of both immune cells and nerves, we focus in this review on the involvement of immune cell-nerve interactions in inflammatory bowel disease and irritable bowel syndrome. Firstly, the possible effects of enteric nerves, especially of the nonadrenergic and noncholinergic nerves, on the intestinal immune system and their possible role in the pathogenesis of chronic intestinal inflammatory diseases are described. Secondly, the possible effects of immunological factors, from the innate (chemokines and Toll-like receptors) as well as the adaptive (cytokines and immunoglobulins) immune system, on gastro-intestinal nerves and its potential role in the development of inflammatory bowel disease and irritable bowel syndrome are reviewed. investigations of receptor-mediated and intracellular signal pathways in neuro-immune interactions might help to develop more effective therapeutic approaches for chronic inflammatory intestinal diseases

    Dietary heme modulates microbiota and mucosa of mouse colon without significant host-microbe cross talk

    No full text
    Previously, we showed that dietary heme injured the colonic surface epithelium and induced hyperproliferation by changing the surface to crypt signaling. In this study we investigated whether bacteria play a role in this changed signaling. Dietary heme increased the Bacteroidetes and decreased the Firmicutes in colonic content. This shift was caused by a selective susceptibility of Gram-positive bacteria to the heme cytotoxic fecal waters, which is not observed for Gram-negative bacteria allowing expansion of the Gram-negative community. The increased amount of Gram-negative bacteria increased LPS exposure to colonocytes, however, there is no appreciable immune response detected in the heme-fed mice. There were no signs of sensing of the bacteria by the mucosa, as changes in TLR signaling were not present. This lack of microbe-host cross talk indicated that the changes in microbiota do not play a causal role in the heme-induced hyperproliferation

    Dietary heme stimulates epithelial cell turnover by downregulating feedback inhibitors of proliferation in murine colon (part 2)

    No full text
    The risk for colon cancer is associated with nutrition, especially high fat and low calcium diets high in red meat. Red meat contains the iron porphyrin pigment heme, which induces cytotoxicity of the colon contents and epithelial hyperproliferation. Using a mouse model, we showed that heme caused damage to the colonic surface epithelium and induced compensatory hyperproliferation. Expression levels of heme- and stress-related genes show that heme affects surface cells and not directly crypt cells. Therefore, injured surface cells should signal to crypt TA cells to induce compensatory hyperproliferation. Surface-specific downregulated inhibitors of proliferation were Wnt inhibitory factor 1, Indian Hedgehog, Bone morphogenic protein 2 and possibly Interleukin-15. Heme also upregulated Amphiregulin, Epiregulin and Cyclooxygenase-2 mRNA in the surface cells, however, their protein/metabolite levels were not increased as heme induced surface-specific translation repression by increasing 4E-BP1. Therefore, we conclude that heme induced colonic hyperproliferation and hyperplasia by repressing feedback inhibition of proliferation
    • …
    corecore