11 research outputs found

    What to expect and when to expect it : an fMRI study of expectancy in children with ADHD symptoms

    No full text
    Changes in cognitive control and timing have both been implicated in ADHD. Both are involved in building and monitoring expectations about the environment, and altering behavior if those expectations are violated. In ADHD, problems with expectations about future events have high face validity, as this would be associated with behavior that is inappropriate only given a certain context, similar to symptoms of the disorder. In this fMRI study, we used a timing manipulated go/nogo task to assess brain activity related to expectations about what (cognitive control) and when (timing) events would occur. We hypothesized that problems in building expectations about the environment are a more general, trans-diagnostic characteristic of children with hyperactive, impulsive and inattentive symptoms. To address this, we included children with ASD and symptoms of ADHD, in addition to children with ADHD and typically developing children. We found between-group differences in brain activity related to expectations about when (timing), but not what events will occur (cognitive control). Specifically, we found timing-related hypo-activity that was in part unique to children with a primary diagnosis of ADHD (left pallidum) and in part shared by children with similar levels of ADHD symptoms and a primary diagnosis of ASD (left subthalamic nucleus). Moreover, we found poorer task performance related to timing, but only in children with ASD and symptoms of ADHD. Ultimately, such neurobiological changes in children with ADHD symptoms may relate to a failure to build or monitor expectations and thereby hinder the efficiency of their interaction with the environment

    Children with ADHD symptoms show deficits in reactive but not proactive inhibition, irrespective of their formal diagnosis

    No full text
    Contains fulltext : 197245.pdf (publisher's version ) (Open Access

    Can we use neuroimaging data to differentiate between subgroups of children with ADHD symptoms : A proof of concept study using latent class analysis of brain activity

    No full text
    Background: Multiple pathway models of ADHD suggest that multiple, separable biological pathways may lead to symptoms of the disorder. If this is the case, it should be possible to identify subgroups of children with ADHD based on distinct patterns of brain activity. Previous studies have used latent class analysis (LCA) to define subgroups at the behavioral and cognitive level and to then test whether they differ at the neurobiological level. In this proof of concept study, we took a reverse approach. We applied LCA to functional imaging data from two previously published studies to explore whether we could identify subgroups of children with ADHD symptoms at the neurobiological level with a meaningful relation to behavior or neuropsychology. Methods: Fifty-six children with symptoms of ADHD (27 children with ADHD and 29 children with ASD and ADHD symptoms) and 31 typically developing children performed two neuropsychological tasks assessing reward sensitivity and temporal expectancy during functional magnetic resonance imaging. LCA was used to identify subgroups with similar patterns of brain activity separately for children with ADHD-symptoms and typically developing children. Behavioral and neuropsychological differences between subgroups were subsequently investigated. Results: For typically developing children, a one-subgroup model gave the most parsimonious fit, whereas for children with ADHD-symptoms a two-subgroup model best fits the data. The first ADHD subgroup (n = 49) showed attenuated brain activity compared to the second subgroup (n = 7) and to typically developing children (n = 31). Notably, the ADHD subgroup with attenuated brain activity showed less behavioral problems in everyday life. Conclusions: In this proof of concept study, we showed that we could identify distinct subgroups of children with ADHD-symptoms based on their brain activity profiles. Generalizability was limited due to the small sample size, but ultimately such neurobiological profiles could improve insight in individual prognosis and treatment options

    Can we use neuroimaging data to differentiate between subgroups of children with ADHD symptoms : A proof of concept study using latent class analysis of brain activity

    No full text
    Background: Multiple pathway models of ADHD suggest that multiple, separable biological pathways may lead to symptoms of the disorder. If this is the case, it should be possible to identify subgroups of children with ADHD based on distinct patterns of brain activity. Previous studies have used latent class analysis (LCA) to define subgroups at the behavioral and cognitive level and to then test whether they differ at the neurobiological level. In this proof of concept study, we took a reverse approach. We applied LCA to functional imaging data from two previously published studies to explore whether we could identify subgroups of children with ADHD symptoms at the neurobiological level with a meaningful relation to behavior or neuropsychology. Methods: Fifty-six children with symptoms of ADHD (27 children with ADHD and 29 children with ASD and ADHD symptoms) and 31 typically developing children performed two neuropsychological tasks assessing reward sensitivity and temporal expectancy during functional magnetic resonance imaging. LCA was used to identify subgroups with similar patterns of brain activity separately for children with ADHD-symptoms and typically developing children. Behavioral and neuropsychological differences between subgroups were subsequently investigated. Results: For typically developing children, a one-subgroup model gave the most parsimonious fit, whereas for children with ADHD-symptoms a two-subgroup model best fits the data. The first ADHD subgroup (n = 49) showed attenuated brain activity compared to the second subgroup (n = 7) and to typically developing children (n = 31). Notably, the ADHD subgroup with attenuated brain activity showed less behavioral problems in everyday life. Conclusions: In this proof of concept study, we showed that we could identify distinct subgroups of children with ADHD-symptoms based on their brain activity profiles. Generalizability was limited due to the small sample size, but ultimately such neurobiological profiles could improve insight in individual prognosis and treatment options

    Children with ADHD symptoms show decreased activity in ventral striatum during the anticipation of reward, irrespective of ADHD diagnosis

    No full text
    Background: Changes in reward processing are thought to be involved in the etiology of attention-deficit/hyperactivity disorder (ADHD), as well as other developmental disorders. In addition, different forms of therapy for ADHD rely on reinforcement principles. As such, improved understanding of reward processing in ADHD could eventually lead to more effective treatment options. However, differences in reward processing may not be specific to ADHD, but may be a trans-diagnostic feature of disorders that involve ADHD-like symptoms. Methods: In this event-related fMRI study, we used a child-friendly version of the monetary incentive delay task to assess performance and brain activity during reward anticipation. Also, we collected questionnaire data to assess reward sensitivity in daily life. For final analyses, data were available for 27 typically developing children, 24 children with ADHD, and 25 children with an autism spectrum disorder (ASD) and ADHD symptoms. Results: We found decreased activity in ventral striatum during anticipation of reward in children with ADHD symptoms, both for children with ADHD as their primary diagnosis and in children with autism spectrum disorder and ADHD symptoms. We found that higher parent-rated sensitivity to reward was associated with greater anticipatory activity in ventral striatum for children with ADHD symptoms. In contrast, there was no relationship between the degree of ADHD symptoms and activity in ventral striatum. Conclusions: We provide evidence of biological and behavioral differences in reward sensitivity in children with ADHD symptoms, regardless of their primary diagnosis. Ultimately, a dimensional brain-behavior model of reward sensitivity in children with symptoms of ADHD may be useful to refine treatment options dependent on reward processing

    Development of cortical thickness and surface area in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder often associated with changes in cortical volume. The constituents of cortical volume – cortical thickness and surface area – have separable developmental trajectories and are related to different neurobiological processes. However, little is known about the developmental trajectories of cortical thickness and surface area in ASD. In this magnetic resonance imaging (MRI) study, we used an accelerated longitudinal design to investigate the cortical development in 90 individuals with ASD and 90 typically developing controls, aged 9 to 20 years. We quantified cortical measures using the FreeSurfer software package, and then used linear mixed model analyses to estimate the developmental trajectories for each cortical measure. Our primary finding was that the development of surface area follows a linear trajectory in ASD that differs from typically developing controls. In typical development, we found a decline in cortical surface area between the ages of 9 and 20 that was absent in ASD. We found this pattern in all regions where developmental trajectories for surface area differed between groups. When we applied a more stringent correction that takes the interdependency of measures into account, this effect on cortical surface area retained significance for left banks of superior temporal sulcus, postcentral area, and right supramarginal area. These areas have previously been implicated in ASD and are involved in the interpretation and processing of audiovisual social stimuli and distinction between self and others. Although some differences in cortical volume and thickness were found, none survived the more stringent correction for multiple testing. This study underscores the importance of distinguishing between cortical surface area and thickness in investigating cortical development, and suggests the development of cortical surface area is of importance to ASD

    The development of brain network architecture

    No full text
    Brain connectivity shows protracted development throughout childhood and adolescence, and, as such, the topology of brain networks changes during this period. The complexity of these changes with development is reflected by regional differences in maturation. This study explored age-related changes in network topology and regional developmental patterns during childhood and adolescence. We acquired two sets of Diffusion Weighted Imaging-scans and anatomical T1-weighted scans. The first dataset included 85 typically developing individuals (53 males; 32 females), aged between 7 and 23 years and was acquired on a Philips Achieva 1.5 Tesla scanner. A second dataset (N=38) was acquired on a different (but identical) 1.5 T scanner and was used for independent replication of our results. We reconstructed whole brain networks using tractography. We operationalized fiber tract development as changes in mean diffusivity and radial diffusivity with age. Most fibers showed maturational changes in mean and radial diffusivity values throughout childhood and adolescence, likely reflecting increasing white matter integrity. The largest age-related changes were observed in association fibers within and between the frontal and parietal lobes. Furthermore, there was a simultaneous age-related decrease in average path length (

    Development of cortical thickness and surface area in autism spectrum disorder

    Get PDF
    Autism spectrum disorder (ASD) is a neurodevelopmental disorder often associated with changes in cortical volume. The constituents of cortical volume – cortical thickness and surface area – have separable developmental trajectories and are related to different neurobiological processes. However, little is known about the developmental trajectories of cortical thickness and surface area in ASD. In this magnetic resonance imaging (MRI) study, we used an accelerated longitudinal design to investigate the cortical development in 90 individuals with ASD and 90 typically developing controls, aged 9 to 20 years. We quantified cortical measures using the FreeSurfer software package, and then used linear mixed model analyses to estimate the developmental trajectories for each cortical measure. Our primary finding was that the development of surface area follows a linear trajectory in ASD that differs from typically developing controls. In typical development, we found a decline in cortical surface area between the ages of 9 and 20 that was absent in ASD. We found this pattern in all regions where developmental trajectories for surface area differed between groups. When we applied a more stringent correction that takes the interdependency of measures into account, this effect on cortical surface area retained significance for left banks of superior temporal sulcus, postcentral area, and right supramarginal area. These areas have previously been implicated in ASD and are involved in the interpretation and processing of audiovisual social stimuli and distinction between self and others. Although some differences in cortical volume and thickness were found, none survived the more stringent correction for multiple testing. This study underscores the importance of distinguishing between cortical surface area and thickness in investigating cortical development, and suggests the development of cortical surface area is of importance to ASD
    corecore