11 research outputs found

    Recent Evolution of Glaciers in the Manaslu Region of Nepal From Satellite Imagery and UAV Data (1970–2019)

    Get PDF
    Glacierized mountain ranges such as the Himalaya comprise a variety of glacier types, including clean and debris-covered glaciers. Monitoring their behaviour over time requires an assessment of changes in area and elevation along with surface features and geomorphology. In this paper we quantify the surface evolution of glacier systems in the Manaslu region of Nepal over the last five decades using 2013/2019 multi-sensor imagery and elevation data constructed from 1970 declassified Corona imagery and 1970 declassified Corona imagery. We investigate area changes, glacier thickness, geodetic glacier mass balance and surface velocity changes at regional scales and focus on the Ponkar Glacier and Thulagi Glacier and Lake for an in-depth assessment of surface geomorphology and surface feature dynamics (ponds, vegetation and ice cliffs). The time series of surface elevation changes for the lower ablation area of Ponkar Glacier is extended using 2019 UAV-based imagery and field-based ablation rates measured over the period 2016–2019. Glaciers in the Manaslu region experienced a mean area loss of −0.26 ± 0.0001% a−1 between 1970 and 2019. The mean surface lowering was −0.20 ± 0.02 ma−1 over the period 1970 to 2013, corresponding to a regional geodetic mass balance of −0.17 ± 0.03 m w. e.a−1. Overall, debris-covered glaciers had slightly higher thinning rates compared to clean ice glaciers; lake-terminating glaciers had double thinning rates compared to land-terminating glaciers. Individual glacier mass balance was negatively controlled by glacier slope and mean glacier elevation. During the period 1970 to 2013, Ponkar Glacier had a geodetic mass balance of −0.06 ± 0.01 m w. e.a−1, inversely correlated with parts of the central trunk thickening. Between 2013 and 2019 there was a nine-fold increase in the thinning rates over the lower parts of the glacier tongue relative to the period 1970–2013. Ice-surface morphology changes between 1970 and 2019 on Ponkar Glacier include a decrease in ogives and open crevasses, an increase in ice cliffs and ponds and the expansion of the supraglacial debris and ice-surface vegetation. These changes point to reduced ice-dynamic activity and are commensurate with the observed recession and negative glacier mass balance over the last five decades.publishedVersio

    Recent Evolution of Glaciers in the Manaslu Region of Nepal From Satellite Imagery and UAV Data (1970–2019)

    Get PDF
    Glacierized mountain ranges such as the Himalaya comprise a variety of glacier types, including clean and debris-covered glaciers. Monitoring their behaviour over time requires an assessment of changes in area and elevation along with surface features and geomorphology. In this paper we quantify the surface evolution of glacier systems in the Manaslu region of Nepal over the last five decades using 2013/2019 multi-sensor imagery and elevation data constructed from 1970 declassified Corona imagery and 1970 declassified Corona imagery. We investigate area changes, glacier thickness, geodetic glacier mass balance and surface velocity changes at regional scales and focus on the Ponkar Glacier and Thulagi Glacier and Lake for an in-depth assessment of surface geomorphology and surface feature dynamics (ponds, vegetation and ice cliffs). The time series of surface elevation changes for the lower ablation area of Ponkar Glacier is extended using 2019 UAV-based imagery and field-based ablation rates measured over the period 2016–2019. Glaciers in the Manaslu region experienced a mean area loss of −0.26 ± 0.0001% a−1 between 1970 and 2019. The mean surface lowering was −0.20 ± 0.02 ma−1 over the period 1970 to 2013, corresponding to a regional geodetic mass balance of −0.17 ± 0.03 m w. e.a−1. Overall, debris-covered glaciers had slightly higher thinning rates compared to clean ice glaciers; lake-terminating glaciers had double thinning rates compared to land-terminating glaciers. Individual glacier mass balance was negatively controlled by glacier slope and mean glacier elevation. During the period 1970 to 2013, Ponkar Glacier had a geodetic mass balance of −0.06 ± 0.01 m w. e.a−1, inversely correlated with parts of the central trunk thickening. Between 2013 and 2019 there was a nine-fold increase in the thinning rates over the lower parts of the glacier tongue relative to the period 1970–2013. Ice-surface morphology changes between 1970 and 2019 on Ponkar Glacier include a decrease in ogives and open crevasses, an increase in ice cliffs and ponds and the expansion of the supraglacial debris and ice-surface vegetation. These changes point to reduced ice-dynamic activity and are commensurate with the observed recession and negative glacier mass balance over the last five decades.publishedVersio

    Ice Cliff Dynamics of Debris-Covered Trakarding Glacier in the Rolwaling Region, Nepal Himalaya

    Get PDF
    Ice cliffs can act as “hot spots” for melt on debris-covered glaciers and promote local glacier mass loss. Repeat high-resolution remote-sensing data are therefore required to monitor the role of ice cliff dynamics in glacier mass loss. Here we analyze high-resolution aerial photogrammetry data acquired during the 2007, 2018, and 2019 post-monsoon seasons to delineate and monitor the morphology, distribution, and temporal changes of the ice cliffs across the debris-covered Trakarding Glacier in the eastern Nepal Himalaya. We generate an ice cliff inventory from the 2018 and 2019 precise terrain data, with ice cliffs accounting for 4.7 and 6.1% of the debris-covered area, respectively. We observe large surface lowering (>2.0 m a−1) where there is a denser distribution of ice cliffs. We also track the survival, formation, and disappearance of ice cliffs from 2018 to 2019, and find that ∼15% of the total ice cliff area is replaced by new ice cliffs. Furthermore, we observe the overall predominance of northwest-facing ice cliffs, although we do observe spatial heterogeneities in the aspect variance of the ice cliffs (ice cliffs face in similar/various directions). Many new ice cliffs formed across the stagnant middle sections of the glacier, coincident with surface water drainage and englacial conduit intake observations. This spatial relationship between ice cliffs and the glacier hydrological system suggests that these englacial and supraglacial hydrological systems play a significant role in ice cliff formation

    Precipitation Observations in Rolwaling Valley, eastern Nepal Himalayas, in summer 2019

    No full text
    To better understand summer precipitation, including extreme events at higher elevations in the Himalayas and its variability, we installed rain gauges in Singati, Gongar, Simigaun, Dongang, Beding, and Na along the Rolwaling valley of the eastern Nepal Himalayas, leading to the Trambau/Trakading glaciers in May 2019. The dataset contains hourly records from the rain gauge stations, which measured precipitation by tipping bucket. The total amount of precipitation during the preceding hour was considered as the hourly precipitation. The data covers from June to September 2019. The data provided here represents a cleaned dataset extracted from the original data logger files

    Preliminary results of mass-balance observations of Yala Glacier and analysis of temperature and precipitation gradients in Langtang Valley, Nepal

    No full text
    Monitoring the glacier mass balance of summer-accumulation-type Himalayan glaciers is critical to not only assess the impact of climate change on the volume of such glaciers but also predict the downstream water availability and the global sea-level change in future. To better understand the change in meteorological parameters related to glacier mass balance and runoff in a glacierized basin and to assess the highly heterogeneous glacier responses to climate change in the Nepal Himalaya and nearby ranges, the Cryosphere Monitoring Project (CMP) carries out meteorological observations in Langtang Valley and mass-balance measurements on Yala Glacier, a debris-free glacier in the same valley. A negative annual mass balance of -0.89mw.e. and the rising equilibrium-line altitude of Yala Glacier indicate a continuation of a secular trend toward more negative mass balances. Lower temperature lapse rate during the monsoon, the effect of convective precipitation associated with mesoscale thermal circulation in the local precipitation and the occurrence of distinct diurnal cycles of temperature and precipitation at different stations in the valley are other conclusions of this comprehensive scientific study initiated by CMP which aims to yield multi-year glaciological, hydrological and meteorological observations in the glacierized Langtang River basin

    Anomalous winter-snow-amplified earthquake-induced disaster of the 2015 Langtang avalanche in Nepal

    Get PDF
    Coseismic avalanches and rockfalls, as well as their simultaneous air blast and muddy flow, which were induced by the 2015 Gorkha earthquake in Nepal, destroyed the village of Langtang. In order to reveal volume and structure of the deposit covering the village, as well as sequence of the multiple events, we conducted an intensive in situ observation in October 2015. Multitemporal digital elevation models created from photographs taken by helicopter and unmanned aerial vehicles reveal that the deposit volumes of the primary and succeeding events were 6.81g±g1.54g × g106 and 0.84g±g0.92g × g106gm3, respectively. Visual investigations of the deposit and witness statements of villagers suggest that the primary event was an avalanche composed mostly of snow, while the collapsed glacier ice could not be dominant source for the total mass. Succeeding events were multiple rockfalls which may have been triggered by aftershocks. From the initial deposit volume and the area of the upper catchment, we estimate an average snow depth of 1.82g±g0.46gm in the source area. This is consistent with anomalously large snow depths (1.28-1.52gm) observed at a neighboring glacier (4800-5100gmga.s.l.), which accumulated over the course of four major snowfall events between October 2014 and the earthquake on 25 April 2015. Considering long-term observational data, probability density functions, and elevation gradients of precipitation, we conclude that this anomalous winter snow was an extreme event with a return interval of at least 100 years. The anomalous winter snowfall may have amplified the disastrous effects induced by the 2015 Gorkha earthquake in Nepal
    corecore