153 research outputs found
Stochastic Analysis of Satellite Broadband by Mega-Constellations with Inclined LEOs
As emerging massive constellations are intended to provide seamless
connectivity for remote areas using hundreds of small low Earth orbit (LEO)
satellites, new methodologies have great importance to study the performance of
these networks. In this paper, we derive both downlink and uplink analytical
expressions for coverage probability and data rate of an inclined LEO
constellation under general fading, regardless of exact satellites' positions.
Our solution involves two phases as we, first, abstract the network into a
uniformly distributed network. Secondly, we obtain a new parameter, effective
number of satellites, for every user's latitude which compensates for the
performance mismatch between the actual and uniform constellations. In addition
to exact derivation of the network performance metrics, this study provides
insight into selecting the constellation parameters, e.g., the total number of
satellites, altitude, and inclination angle.Comment: Accepted in the 31st International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC) 202
Constrained Phase Noise Estimation in OFDM Using Scattered Pilots Without Decision Feedback
In this paper, we consider an OFDM radio link corrupted by oscillator phase
noise in the receiver, namely the problem of estimating and compensating for
the impairment. To lessen the computational burden and delay incurred onto the
receiver, we estimate phase noise using only scattered pilot subcarriers, i.e.,
no tentative symbol decisions are used in obtaining and improving the phase
noise estimate. In particular, the phase noise estimation problem is posed as
an unconstrained optimization problem whose minimizer suffers from the
so-called amplitude and phase estimation error. These errors arise due to
receiver noise, estimation from limited scattered pilot subcarriers and
estimation using a dimensionality reduction model. It is empirically shown
that, at high signal-to-noise-ratios, the phase estimation error is small. To
reduce the amplitude estimation error, we restrict the minimizer to be drawn
from the so-called phase noise geometry set when minimizing the cost function.
The resulting optimization problem is a non-convex program. However, using the
S-procedure for quadratic equalities, we show that the optimal solution can be
obtained by solving the convex dual problem. We also consider a less complex
heuristic scheme that achieves the same objective of restricting the minimizer
to the phase noise geometry set. Through simulations, we demonstrate improved
coded bit-error-rate and phase noise estimation error performance when
enforcing the phase noise geometry. For example, at high
signal-to-noise-ratios, the probability density function of the phase noise
estimation error exhibits thinner tails which results in lower bit-error-rate
Downlink Coverage and Rate Analysis of Low Earth Orbit Satellite Constellations Using Stochastic Geometry
As low Earth orbit (LEO) satellite communication systems are gaining
increasing popularity, new theoretical methodologies are required to
investigate such networks' performance at large. This is because deterministic
and location-based models that have previously been applied to analyze
satellite systems are typically restricted to support simulations only. In this
paper, we derive analytical expressions for the downlink coverage probability
and average data rate of generic LEO networks, regardless of the actual
satellites' locality and their service area geometry. Our solution stems from
stochastic geometry, which abstracts the generic networks into uniform binomial
point processes. Applying the proposed model, we then study the performance of
the networks as a function of key constellation design parameters. Finally, to
fit the theoretical modeling more precisely to real deterministic
constellations, we introduce the effective number of satellites as a parameter
to compensate for the practical uneven distribution of satellites on different
latitudes. In addition to deriving exact network performance metrics, the study
reveals several guidelines for selecting the design parameters for future
massive LEO constellations, e.g., the number of frequency channels and
altitude.Comment: Accepted for publication in the IEEE Transactions on Communications
in April 202
Frequency-Selective PAPR Reduction for OFDM
We study the peak-to-average power ratio (PAPR) problem in orthogonal
frequency-division multiplexing (OFDM) systems. In conventional clipping and
filtering based PAPR reduction techniques, clipping noise is allowed to spread
over the whole active passband, thus degrading the transmit signal quality
similarly at all active subcarriers. However, since modern radio networks
support frequency-multiplexing of users and services with highly different
quality-of-service expectations, clipping noise from PAPR reduction should be
distributed unequally over the corresponding physical resource blocks (PRBs).
To facilitate this, we present an efficient PAPR reduction technique, where
clipping noise can be flexibly controlled and filtered inside the transmitter
passband, allowing to control the transmitted signal quality per PRB. Numerical
results are provided in 5G New Radio (NR) mobile network context, demonstrating
the flexibility and efficiency of the proposed method.Comment: Accepted for publication as a Correspondence in the IEEE Transactions
on Vehicular Technology in March 2019. This is the revised version of
original manuscript, and it is in press at the momen
Downlink and Uplink Low Earth Orbit Satellite Backhaul for Airborne Networks
Providing backhaul access for airborne networks ensures their seamless connectivity to other aerial or terrestrial users with sufficient data rate. The backhaul for aerial platforms (APs) has been mostly provided through geostationary Earth orbit satellites and the terrestrial base stations (BSs). However, the former limits the achievable throughput due to significant path loss and latency, and the latter is unable to provide full sky coverage due to existence of wide under-served regions on Earth. Therefore, the emerging low Earth orbit (LEO) Internet constellations have the potential to address this problem by providing a thorough coverage for APs with higher data rate and lower latency. In this paper, we analyze the coverage probability and data rate of a LEO backhaul network for an AP located at an arbitrary altitude above the ground. The satellites' locality is modeled as a nonhomogeneous Poisson point process which not only enables tractable analysis by utilizing the tools from stochastic geometry, but also considers the latitude-dependent density of satellites. To demonstrate a compromise on the backhaul network's selection for the airborne network, we also compare the aforementioned setup with a reference terrestrial backhaul network, where AP directly connects to the ground BSs. Based on the numerical results, we can conclude that, for low BS densities, LEO satellites provide a better backhaul connection, which improves by increasing the AP's altitude.acceptedVersionPeer reviewe
Stochastic Coverage Analysis for Multi-Altitude LEO Satellite Networks
While leading companies will soon have launched their low Earth orbit (LEO) constellations with different orbital characteristics, e.g., altitude and inclination, the analytical understanding of these networks with satellites flying on varying altitudes is only limited to specific network setups, e.g., polar orbits. In this letter, we derive the coverage probability of a generic multi-altitude LEO network with the satellites being distributed uniformly on inclined circular orbits at varying altitudes. To maintain tractability of our derivations, we firstly model the satellites as a binomial point process assuming their altitude to be an arbitrarily distributed random variable. Secondly, we take into account the latitude-dependent distribution of satellites over the orbits through finding the effective number of satellites. The coverage probabilities of four multi-altitude benchmark constellations are evaluated in terms of different constellation parameters as well as the user’s latitude. The numerical results reveal that after a certain limit, the coverage probability improves only slightly with increasing the constellation size; therefore, the costly over-sizing of LEO networks is not always recommendable.Peer reviewe
Efficiency–Throughput Trade-off of Pulsed RF Waveforms in Simultaneous Wireless Information and Power Transfer
We study the receiver efficiency–throughput trade-off in a realistic radio frequency (RF) simultaneous wireless information and power transfer (SWIPT) system. Based on the energy harvesting receiver characteristics, we propose a continuously phase-modulated pulsed RF waveform to achieve maximum receiver efficiency at any input RF power level. We study the impact of varying the duty cycle of a pulsed RF waveform on the receiver efficiency of wireless power transfer along with the throughput of information transfer, and the trade-off thereof. The experiments confirm that a phase-shift keying (PSK) modulated pulsed RF waveform yields superior receiver efficiency than other digital baseband modulations as well as multisine signals despite they are designed particularly for power transfer. However, the optimal efficiency is attained at the expense of a significant loss in throughput due to pulsed transmission, depending on the average input RF power level.Peer reviewe
- …