81 research outputs found

    Snake and spider toxins induce a rapid recovery of function of botulinum neurotoxin paralysed neuromuscular junction

    Get PDF
    Botulinum neurotoxins (BoNTs) and some animal neurotoxins (-Bungarotoxin, -Btx, from elapid snakes and -Latrotoxin, -Ltx, from black widow spiders) are pre-synaptic neurotoxins that paralyse motor axon terminals with similar clinical outcomes in patients. However, their mechanism of action is different, leading to a largely-different duration of neuromuscular junction (NMJ) blockade. BoNTs induce a long-lasting paralysis without nerve terminal degeneration acting via proteolytic cleavage of SNARE proteins, whereas animal neurotoxins cause an acute and complete degeneration of motor axon terminals, followed by a rapid recovery. In this study, the injection of animal neurotoxins in mice muscles previously paralyzed by BoNT/A or /B accelerates the recovery of neurotransmission, as assessed by electrophysiology and morphological analysis. This result provides a proof of principle that, by causing the complete degeneration, reabsorption, and regeneration of a paralysed nerve terminal, one could favour the recovery of function of a biochemically- or genetically-altered motor axon terminal. These observations might be relevant to dying-back neuropathies, where pathological changes first occur at the neuromuscular junction and then progress proximally toward the cell body

    Schwann cells are activated by ATP released from neurons in an in vitro cellular model of Miller Fisher syndrome

    Get PDF
    The neuromuscular junction is exposed to different types of insult, including mechanical trauma, toxins and autoimmune antibodies and, accordingly, has retained through evolution a remarkable ability to regenerate. Regeneration is driven by multiple signals that are exchanged among the cellular components of the junction. These signals are largely unknown. Miller Fisher syndrome is a variant of Guillain-Barr\ue9 syndrome caused by autoimmune antibodies specific for epitopes of peripheral axon terminals. Using an animal model of Miller Fisher syndrome, we recently reported that a monoclonal anti-polysialoganglioside GQ1b antibody plus complement damages nerve terminals with production of mitochondrial hydrogen peroxide, which activates Schwann cells. Several additional signaling molecules are likely to be involved in the activation of the regeneration program in these cells. Using an in vitro cellular model consisting of co-cultured primary neurons and Schwann cells, we found that ATP is released by neurons injured by the anti-GQ1b antibody plus complement. Neuron-derived ATP acts as an alarm messenger for Schwann cells, where it induces the activation of intracellular pathways, including calcium signaling, cAMP and CREB, which, in turn, produce signals that promote nerve regeneration. These results contribute to defining the cross-talk taking place at the neuromuscular junction when it is attacked by anti-gangliosides autoantibodies plus complement, which is crucial for nerve regeneration and is also likely to be important in other peripheral neuropathies

    Pneumo- and neurotropism of avian origin Italian highly pathogenic avian influenza H7N1 isolates in experimentally infected mice

    Get PDF
    AbstractAn experimental infection of mice was performed in order to investigate the potential for interspecies transmission in mammals of Italian HPAI viruses of the H7N1 subtype. Three avian origin isolates were selected, two strains obtained from ostrich (one of which contained a PB2-627 Lysine residue) and one from a chicken. Following intranasal infection of mice, clinical signs and mortality were recorded in the experimental groups challenged with the two ostrich isolates, while only weight loss was observed in those receiving the chicken strain. Viruses were recovered to a varying extent from respiratory and nervous tissues of infected animals. These results suggest that HPAI viruses, other than H5N1 and H7N7, may have zoonotic implications, and support the consensus that AI infections in poultry are to be eradicated rather than contained

    Arg206 of SNAP-25 is essential for neuroexocytosis at the Drosophila melanogaster neuromuscular junction

    Get PDF
    An analysis of SNAP-25 isoform sequences indicates that there is a highly conserved arginine residue (198 in vertebrates, 206 in the genus Drosophila ) within the C-terminal region, which is cleaved by botulinum neurotoxin A, with consequent blockade of neuroexocytosis. The possibility that it may play an important role in the function of the neuroexocytosis machinery was tested at neuromuscular junctions of Drosophila melanogaster larvae expressing SNAP-25 in which Arg206 had been replaced by alanine. Electrophysiological recordings of spontaneous and evoked neurotransmitter release under different conditions as well as testing for the assembly of the SNARE complex indicate that this residue, which is at the P 1 ′ position of the botulinum neurotoxin A cleavage site, plays an essential role in neuroexocytosis. Computer graphic modelling suggests that this arginine residue mediates protein–protein contacts within a rosette of SNARE complexes that assembles to mediate the fusion of synaptic vesicles with the presynaptic plasma membrane

    CXCL12/SDF-1 from perisynaptic Schwann cells promotes regeneration of injured motor axonterminals

    Get PDF
    The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter-cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12, also abbreviated as stromal-derived factor-1 (SDF-1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by -latrotoxin. CXCL12 acts via binding to the neuronal CXCR4 receptor. A CXCL12-neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration invivo. Recombinant CXCL12 invivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons invitro. These findings indicate that the CXCL12-CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage

    The mouse model is suitable for the study of viral factors governing transmission and pathogenesis of highly pathogenic avian influenza (HPAI) viruses in mammals

    Get PDF
    Highly pathogenic avian influenza (HPAI) viruses of the H5 and H7 subtype pose a major public health threat due to their capacity to cross the species barrier and infect mammals, for example dogs, cats and humans. In the present study we tested the capacity of selected H7 and H5 HPAI viruses to infect and to be transmitted from infected BALB/c mice to contact sentinels. Previous experiments have shown that viruses belonging to both H5 and H7 subtypes replicate in the respiratory tract and central nervous system of experimentally infected mice. In this study we show that selected H7N1 and H5N1 HPAI viruses can be transmitted from mouse-to-mouse by direct contact, and that in experimentally infected animals they exhibit a different pattern of replication and transmission. Our results can be considered as a starting point for transmission experiments involving other influenza A viruses with α 2-3 receptor affinity in order to better understand the viral factors influencing transmissibility of these viruses in selected mammalian species

    CXCL12α/SDF‐1 from perisynaptic Schwann cells promotes regeneration of injured motor axon terminals

    Get PDF
    The neuromuscular junction has retained through evolution the capacity to regenerate after damage, but little is known on the inter‐cellular signals involved in its functional recovery from trauma, autoimmune attacks, or neurotoxins. We report here that CXCL12α, also abbreviated as stromal‐derived factor‐1 (SDF‐1), is produced specifically by perisynaptic Schwann cells following motor axon terminal degeneration induced by α‐latrotoxin. CXCL12α acts via binding to the neuronal CXCR4 receptor. A CXCL12α‐neutralizing antibody or a specific CXCR4 inhibitor strongly delays recovery from motor neuron degeneration in vivo. Recombinant CXCL12α in vivo accelerates neurotransmission rescue upon damage and very effectively stimulates the axon growth of spinal cord motor neurons in vitro. These findings indicate that the CXCL12α‐CXCR4 axis plays an important role in the regeneration of the neuromuscular junction after motor axon injury. The present results have important implications in the effort to find therapeutics and protocols to improve recovery of function after different forms of motor axon terminal damage

    Cellular Mechanisms of Action of Snake Phospholipase A2 Toxins

    No full text
    Snake venoms contain a large amount of toxins endowed with phospholipase A2 (PLA2) activity. Despite an overall conserved structure, snake PLA2s display a variety of pharmacological activities that are the result of different cell targets and mode of actions. Here follows an overview of the present knowledge on the mechanism of action of the two main classes of snake PLA2s, myotoxins and neurotoxins, derived from in vivo, ex vivo, and in vitro models, along with a comparison with mammalian secreted PLA2 (sPLA2) homologues. In spite of many qualified efforts, several aspects of snake envenomation are still undefined, including the identification of specific receptors on nerve and muscle membranes. Further studies are required to elucidate the unclear molecular steps of snakebite intoxication that might contribute to shed light also on the mode of action of mammalian PLA2 counterparts. There is a high degree of homology in terms of primary structure between snake and mammalian sPLA2s, suggesting that snake PLA2 receptors might be also candidates for mammalian sPLA2s; this topic is of high relevance, in the light of the emerging involvement of mammalian sPLA2s in many human disorders

    Signals Orchestrating Peripheral Nerve Repair

    No full text
    The peripheral nervous system has retained through evolution the capacity to repair and regenerate after assault from a variety of physical, chemical, or biological pathogens. Regeneration relies on the intrinsic abilities of peripheral neurons and on a permissive environment, and it is driven by an intense interplay among neurons, the glia, muscles, the basal lamina, and the immune system. Indeed, extrinsic signals from the milieu of the injury site superimpose on genetic and epigenetic mechanisms to modulate cell intrinsic programs. Here, we will review the main intrinsic and extrinsic mechanisms allowing severed peripheral axons to re-grow, and discuss some alarm mediators and pro-regenerative molecules and pathways involved in the process, highlighting the role of Schwann cells as central hubs coordinating multiple signals. A particular focus will be provided on regeneration at the neuromuscular junction, an ideal model system whose manipulation can contribute to the identification of crucial mediators of nerve re-growth. A brief overview on regeneration at sensory terminals is also included
    corecore