974 research outputs found

    Complementary Speckle Patterns : deterministic interchange of intrinsic vortices and maxima through Scattering Media

    Full text link
    Intensity minima and maxima of speckle patterns obtained behind a diffuser are experimentally interchanged by applying a spiral phase delay of charge ±1\pm 1 to the impinging coherent beam. This transform arises from the intuitive expectation that a tightly focused beam is so-changed into a vortex beam and vice-versa. The statistics of extrema locations and the intensity distribution of the so-generated "complementary" patterns are characterized by numerical simulations. It is demonstrated experimentally that the incoherent superposition of the three "complementary speckle patterns" yield a synthetic speckle grain size enlarged by a factor 3\sqrt{3}. A cyclic permutation of optical vortices and maxima is unexpectedly observed and discussed.Comment: 9 pages, 9 figure

    Compressive Raman imaging with spatial frequency modulated illumination

    Full text link
    We report a line scanning imaging modality of compressive Raman technology with spatial frequency modulated illumination using a single pixel detector. We demonstrate the imaging and classification of three different chemical species at line scan rates of 40 Hz

    Nonlinear imaging through a golden spiral multicore fiber

    Full text link
    We report two-photon lensless imaging through a novel golden spiral multicore fiber. This unique layout optimizes the sidelobe levels, field of view, cross-talk, group delay and mode density to achieve a sidelobe contrast of atleast 10.9 dB. We demonstrate experimentally the ability to generate and scan a focal point with a femtosecond pulse and perform two-photon imaging.Comment: Submitted to Optics Letter

    Photonic Methods to Enhance Fluorescence Correlation Spectroscopy and Single Molecule Fluorescence Detection

    Get PDF
    Recent advances in nanophotonics open the way for promising applications towards efficient single molecule fluorescence analysis. In this review, we discuss how photonic methods bring innovative solutions for two essential questions: how to detect a single molecule in a highly concentrated solution, and how to enhance the faint optical signal emitted per molecule? The focus is set primarily on the widely used technique of fluorescence correlation spectroscopy (FCS), yet the discussion can be extended to other single molecule detection methods

    A versatile dual spot laser scanning confocal microscopy system for advanced fluorescence correlation spectroscopy analysis in living cell

    Full text link
    A fluorescence correlation spectroscopy (FCS) system based on two independent measurement volumes is presented. The optical setup and data acquisition hardware are detailed, as well as a complete protocol to control the location, size and shape of the measurement volumes. A method that allows to monitor independently the excitation and collection efficiency distribution is proposed. Finally, a few examples of measurements that exploit the two spots in static and/or scanning schemes, are reported.Comment: Accepted for publication in Review of Scientific Instrumen
    corecore