376 research outputs found

    Analysis of the emergent climate change mitigation technologies

    Get PDF
    A climate change mitigation refers to efforts to reduce or prevent emission of greenhouse gases. Mitigation can mean using new technologies and renewable energies, making older equipment more energy efficient, or changing management practices or consumer behavior. The mitigation technologies are able to reduce or absorb the greenhouse gases (GHG) and, in particular, the CO2 present in the atmosphere. The CO2 is a persistent atmospheric gas. It seems increasingly likely that concentrations of CO2 and other greenhouse gases in the atmosphere will overshoot the 450 ppm CO2 target, widely seen as the upper limit of concentrations consistent with limiting the increase in global mean temperature from pre-industrial levels to around 2â—¦C. In order to stay well below to the 2â—¦C temperature thus compared to the pre-industrial level as required to the Paris Agreement it is necessary that in the future we will obtain a low (or better zero) emissions and it is also necessary that we will absorb a quantity of CO2 from the atmosphere, by 2070, equal to 10 Gt/y. In order to obtain this last point, so in order to absorb an amount of CO2 equal to about 10 Gt/y, it is necessary the implementation of the negative emission technologies. The negative emission technologies are technologies able to absorb the CO2 from the atmosphere. The aim of this work is to perform a detailed overview of the main mitigation technologies possibilities currently developed and, in particular, an analysis of an emergent negative emission technology: the microalgae massive cultivation for CO2 biofixation

    The near-IR counterpart of IGR J17480-2446 in Terzan 5

    Get PDF
    Some globular clusters in our Galaxy are noticeably rich in low-mass X-ray binaries. Terzan 5 has the richest population among globular clusters of X- and radio-pulsars and low-mass X-ray binaries. The detection and study of optical/IR counterparts of low-mass X-ray binaries is fundamental to characterizing both the low-mass donor in the binary system and investigating the mechanisms of the formation and evolution of this class of objects. We aim at identifying the near-IR counterpart of the 11 Hz pulsar IGRJ17480-2446 discovered in Terzan 5. Adaptive optics (AO) systems represent the only possibility for studying the very dense environment of GC cores from the ground. We carried out observations of the core of Terzan 5 in the near-IR bands with the ESO-VLT NAOS-CONICA instrument. We present the discovery of the likely counterpart in the Ks band and discuss its properties both in outburst and in quiescence. Archival HST observations are used to extend our discussion to the optical bands. The source is located at the blue edge of the turn-off area in the color-magnitude diagram of the cluster. Its luminosity increase from quiescence to outburst, by a factor 2.5, allows us to discuss the nature of the donor star in the context of the double stellar generation population of Terzan 5 by using recent stellar evolution models.Comment: 7 pages, 4 figure

    Phenotypic and genetic analysis of udder health using SCC in Valle del Belice dairy sheep

    Get PDF
    Intramammary infections (IMI) are a complex of inflammatory diseases which are defined as an inflammation of the mammary gland resulting from the introduction and multiplication of pathogenic micro-organisms

    Evaluation of green coffee-roasting biogas with modeling valorization of possible solutions

    Get PDF
    According to the European Union Directive 2009/28/EC, the goals of obtaining 20% of all energy requirements from renewable sources and a 20% reduction in primary energy use must be fulfilled by 2020. In this work, an evaluation was performed, from the environmental and energy point of view, of anaerobic digestion as a valid solution for the treatment of the byproducts obtained from the coffee-roasting process. In particular, thermophilic anaerobic digestion tests were carried out. Output values from the laboratory were used as input for the MCBioCH4 model to evaluate the produced flow of biogas and biomethane and two different biogas valorization alternatives, namely, the traditional exploitation of biogas for heat/energy production and biomethane conversion. The results of the preliminary simulation showed that a full-scale implementation of the coffee waste biogas production process is technically feasible and environmentally sustainable. Furthermore, the performed analysis validates a general methodology for energy production compatibility planning

    Mass of the b-quark and B-decay constants from Nf=2+1+1 twisted-mass Lattice QCD

    Get PDF
    We present precise lattice computations for the b-quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B-decay constants. We employ gauge configurations with four dynamical quark flavors, up/down, strange and charm, at three values of the lattice spacing (a ~ 0.06 - 0.09 fm) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated to the physical pion mass and to the continuum limit and read: mb(MSbar, mb) = 4.26(10) GeV, mb/mc = 4.42(8), mb/ms = 51.4(1.4), fBs = 229(5) MeV, fB = 193(6) MeV, fBs/fB = 1.184(25) and (fBs/fB)/(fK/fpi) = 0.997(17).Comment: Version to appear in PRD. Added comments to simulation setup and error budget discussion. 1+20 pages, 9 figure

    BNNT- Mediated Irreversible Electroporation: It\u27s Potential on Cancer Cells

    Get PDF
    Irreversible lethal electroporation (IRE) is a new non-thermal ablation modality that uses short pulses of high amplitude static electric fields (up 1000V/cm) to create irreversible pores in the cell membrane, thus, causing cell death. Recently, IRE has emerged as a promising clinical modality for cancer disease treatment. Here, we investigated the responses of tumour human He La cells when subjected to IRE in the presence of BNNTs. These consist of tiny tubes of B and N atoms (arranged in hexagons) with diameters ranging from a 1 to 3 nanometres and lengths \u3c2 μm. BNNTs have attracted wide attention because of their unique electrical properties. We speculate that BNNTs, when interacting with cells exposed to static electrical fields, amplify locally the electric field, leading to cell death. In this work, electroporation assays were performed with a commercial electroporator using the cell-specific protocol suggested by the supplier (exponential decay wave, time constant 20ms) with the specific aim to compare IRE in absence and in presence of BNNTs. We observed that BNNTs have the capacity to decrease substantially the voltage required for IRE. When cells were pulsed at 800V/cm, we observed a 2,2-fold reduction in cell survival in the presence of BNNTs compared to controls. We conclude that the death of the tumour cells exposed to IRE is strongly enhanced in the presence of BNNTs, indicating their potential therapeutic application

    Genome wide analyses reveal the population distinctiveness of the ‘Nera del Mela’ sheep

    Get PDF
    Italy has a long history of sheep breeding and counts several local populations that may represent a unique source of genetic diversity. Among these, Nera del Mela is a sheep genetic resource historically reared in Sicily but not officially recognised as a breed. In this study, we genotyped 36 individuals of Nera del Mela using the OvineSNP50K array, in order to estimate the genetic diversity and evaluate the population structure and relatedness with other Italian sheep breeds. Genetic diversity indices, and inbreeding estimated from runs of homozygosity (FROH) revealed a moderate level of variability. Runs of homozygosity islands mapped candidate genes involved in the adaptation to local environment and immune response. Population genetic analyses using different approaches highlighted the hypothesis that this sheep possesses a defined genetic structure, especially if compared with other recognised breeds, despite the influence of other populations such as the Sicilian breeds. Overall, our findings represent a starting point for the possible official acknowledgement of this population, for the creation of a conservation plan, and thus for preserving this genomic heritage.HIGHLIGHTS Nera de Mela sheep can be considered as a reservoir of genetic diversity. The results indicated a clear genetic differentiation from other populations and moderate level of genetic variability. Our findings represent a starting point for the creation of conservation plans

    Optimizing Sewage Sludge Digestion in Wastewater Treatment Plants: a Case Study from the Largest WWTP in Italy

    Get PDF
    This study is part of a multi-objective, integrated approach to analyze various possibilities for increasing energy efficiency of the largest Italian wastewater treatment plant (WWTP) at Castiglione Torinese, NW Italy. The final goal of this study was evaluating the optimization interventions on the sludge treatment process in terms of mass, energy and greenhouse gas (GHG) emission balance. An optimization scenario of sludge digestion was simulated and compared the present operating situation. In the optimized scenario, a hybrid thermo-chemical pre-treatment of the waste activated sludge (WAS) entering the digestion process was considered. The biogas produced was upgraded to biomethane with a process working with selective membranes. Full scale simulation of the whole sewage sludge treatment line was performed with the screening model MCBioCH4, developed by the Authors. The results showed that the optimization interventions would provide two important positive impacts. Firstly, a reduction of the sludge volume entering into the digestion process. Secondly, biomethane production would be around 20% higher than the methane fraction contained in the biogas actually produced. The energy saving and the increased specific biomethane production would improve the overall GHG balance of the system

    High-density SNP markers elucidate the genetic divergence and population structure of Noticiana sheep breed in the Mediterranean context

    Get PDF
    Among livestock species, sheep have played an early major role in the Mediterranean area. Italy has a long history of sheep breeding and, despite a dramatic contraction in numbers, still raise several local populations that may represent a unique source of genetic diversity. The Noticiana is a breed of the south-eastern part of Sicily appreciated both for its dairy products and for its resistance to harsh environment. In this study, the high-density Illumina Ovine SNP600K BeadChip array was used for the first genome-wide characterization of 48 individuals of Noticiana sheep to investigate its diversity, the genome structure and the relationship within the context of worldwide and Italian breeds. Moreover, the runs of homozygosity (ROH) pattern and the pairwise FST-outliers were examined. Noticiana reported moderate levels of genetic diversity. The high percentage of short and medium length ROH segments (93% under 4 Mb) is indicative of a within breed relatedness dating back to ancient times, despite the absence of management for the mating plans and the reduced population size. In the worldwide context, the Southern Italian, Spanish and Albanian breeds overlapped in a macro cluster which also included the Noticiana sheep. The results highlighted ancestral genetic components of Noticiana shared with Comisana breed, and showed the clear separation from the other Italian sheep. This is likely the consequence of the combined effects of genetic drift, small population size and reproductive isolation. ROH islands and FST-outliers approaches in Noticiana identified genes and QTLs involved in milk and meat production, as well as related to the local adaptation, and therefore are consistent with the phenotypic traits of the studied breed. Although a wider sampling could be useful to deepen the genomic survey on Noticiana, these results represent a crucial starting point for the characterization of an important local genetic resource, with a view of supporting the local economy and preserving the biodiversity of the sheep species

    A self-consistent approach to the hard and soft states of 4U 1705-44

    Get PDF
    Context. High-resolution spectroscopy has recently revealed in many low-mass X-ray binaries hosting a neutron star that the shape of the broad iron line observed in the 6.4-6.97 keV range is consistently well-fitted by a relativistically smeared line profile. Aims: The presence of other broad features, besides the iron line, together with a high S/N of the spectra offer the possibility of testing a self-consistent approach to the overall broadband reflection spectrum and evaluating the impact of the reflection component in the formation of the broadband X-ray spectra. Methods: We analyzed two XMM-Newton observations of the bright atoll source 4U 1705-44, which can be considered a prototype of the class of the persistent NS LMXBs showing both hard and soft states. The first observation was performed when the source was in a hard low flux state, the second during a soft, high-flux state. Both the spectra show broad iron emission lines. We fit the spectra using a two-component model, together with a reflection model specifically suited to the case of a neutron star, where the incident spectrum has a blackbody shape. Results: In the soft state, the reflection model, convolved with a relativistic smearing component, consistently describes the broad features present in the spectrum, and we find a clear relation between the temperature of the incident flux and the temperature of the harder X-ray component that we interpret as the boundary layer emission. In this state we find converging evidence that the boundary layer outer radius is ~2 times the neutron star radius. In the low flux state, we observe a change in the continuum shape of the spectrum with respect to the soft state. Still, the broad local emission features can be associated with a disk reflecting matter, but in a lower ionization state, and possibly produced in an accretion disk truncated at greater distance. Conclusions: Our analysis provides strong evidence that the reflection component in soft states of LMXBs comes from to hard X-ray thermal irradiation, which we identify with the boundary layer emission, also present in the continuum model. In the hard state, the broad iron line if also produced by reflection, and the continuum disk emission can be self-consistently accounted if the disk is truncated at a greater distance than the soft state
    • …
    corecore