83 research outputs found

    Sequence Analysis of Selected Regions of the Equine Herpesvirus 4 Genome

    Get PDF
    The gene encoding glycoprotein gB of EHV-4 strain 1942 was located within a BamHI genomic library by a combination of dot blot and Southern blot hybridisation using probes derived from the HSV-1 gB DNA sequence, and its DNA sequence determined. The major portion of the gene mapped to a 2.9kb fragment at the left-hand end of BamHI-C with the transcriptional control domains and start of the coding sequences of the gene located at the right-hand end of BamHI-M. The unprocessed EHV-4 gB protein was predicted to be 975 amino acids (110kDa) in size and composed of an unusually long amino-terminal signal sequence, a hydrophilic surface domain containing 11 potential N-linked glycosylation sites and 10 cysteine residues, a hydrophobic transmembrane domain thought to span the membrane three times and a highly charged carboxyl-terminal cytoplasmic anchor domain. A potential internal proteolytic cleavage site was identified near the centre of the protein. The EHV-4 gB protein demonstrated high levels of conservation of primary amino acid sequence with other herpesvirus gB-like proteins. Furthermore, the conservation of all cysteine residues and some N-linked glycosylation sites in the surface domain between the gB-like proteins suggested possible conservation of secondary and tertiary structures. The gB-like proteins may have a similar, conserved function across the herpesviruses

    Genetic typing of Candida albicans strains isolated from the oral cavity of patients with denture stomatitis before and after itraconazole therapy

    Get PDF
    This study determined, by molecular typing of C. albicans species isolated from denture stomatitis patients with a mycological relapse six months after successful itraconazole therapy, whether there had been recurrence of infection with the same strain(s), selection of particular strains or infection with new strains of C. albicans. Forty patients with long-standing Candida-associated denture stomatitis were assigned either cyclodextrin itraconazole solution or itraconazole capsules (100mg b.d. for 15 days). Palatal erythema was measured and imprint cultures undertaken at baseline and at 15 days, four weeks and six months after treatment commenced. Yeast isolates were formally identified and chromosomal DNA was extracted from pairs of isolates from those patients with C. albicans present at baseline and six months after treatment commenced. Southern blotting of EcoRI-digested chromosomal DNA was performed using the C. albicans-specific 27A repetitive element as a probe. Eighteen of 36 patients were infected with C. albicans at baseline and six months after treatment commenced. Overall, 13 genetically different strains of C. albicans were found. However, in 17 of 18 patients, the C. albicans strains isolated prior to itraconazole therapy and six months later were the same. Thus recurrence of denture stomatitis in these individuals was due to re-colonisation by the original strain, rather than re-infection with a different strain. Key words: Genotyping, C. albicans, denture stomatitis

    Black-pigmented anaerobic bacteria associated with ovine periodontitis

    Get PDF
    Periodontitis is a polymicrobial infectious disease that causes occlusion change, tooth loss, difficulty in rumination, and premature culling of animals. This study aimed to detect species of the genera Porphyromonas and Prevotella present in the periodontal pocket of sheep with lesions deeper than 5mm (n=14) and in the gingival sulcus of animals considered periodontally healthy (n=20). The presence of microorganisms was evaluated by polymerase chain reaction (PCR) using specific primers for Porphyromonas asaccharolytica, Porphyromonas endodontalis, Porphyromonas gingivalis, Porphyromonas gulae, Prevotella buccae, Prevotella intermedia, Prevotella loescheii, Prevotella melaninogenica, Prevotella nigrescens, Prevotella oralis, and Prevotella tannerae. Prevalence and risk analysis were performed using Student's t-test and Spearman's correlation. Among the Prevotella and Porphyromonas species detected in the periodontal lesions of sheep, P. melaninogenica (85.7%), P. buccae (64.3%), P. gingivalis (50%), and P. endodontalis (50%) were most prevalent. P. gingivalis (15%) and P. oralis (10%) prevailed in the gingival sulcus. P. gulae and P. tannerae were not detected in the 34 samples studied. Data evaluation by t-test verified that occurrence of P. asaccharolytica, P. endodontalis, P. gingivalis, P. buccae, P. intermedia, P. melalinogenica, and P. nigrescens correlated with sheep periodontitis. The findings of this study will be an important contribution to research on pathogenesis of sheep periodontitis and development of its control measures

    The microbiome associated with equine periodontitis and oral health

    Get PDF
    Equine periodontal disease is a common and painful condition and its severe form, periodontitis, can lead to tooth loss. Its aetiopathogenesis remains poorly understood despite recent increased awareness of this disorder amongst the veterinary profession. Bacteria have been found to be causative agents of the disease in other species, but current understanding of their role in equine periodontitis is extremely limited. The aim of this study was to use high-throughput sequencing to identify the microbiome associated with equine periodontitis and oral health. Subgingival plaque samples from 24 horses with periodontitis and gingival swabs from 24 orally healthy horses were collected. DNA was extracted from samples, the V3–V4 region of the bacterial 16S rRNA gene amplified by PCR and amplicons sequenced using Illumina MiSeq. Data processing was conducted using USEARCH and QIIME. Diversity analyses were performed with PAST v3.02. Linear discriminant analysis effect size (LEfSe) was used to determine differences between the groups. In total, 1308 OTUs were identified and classified into 356 genera or higher taxa. Microbial profiles at health differed significantly from periodontitis, both in their composition (p < 0.0001, F = 12.24; PERMANOVA) and in microbial diversity (p < 0.001; Mann–Whitney test). Samples from healthy horses were less diverse (1.78, SD 0.74; Shannon diversity index) and were dominated by the genera Gemella and Actinobacillus, while the periodontitis group samples showed higher diversity (3.16, SD 0.98) and were dominated by the genera Prevotella and Veillonella. It is concluded that the microbiomes associated with equine oral health and periodontitis are distinct, with the latter displaying greater microbial diversity

    Prevalence of feline calicivirus in cats with odontoclastic resorptive lesions and chronic gingivostomatitis

    Get PDF
    Feline odontoclastic resorptive lesion (FORL) and feline chronic gingivostomatitis (FCGS) are two of the most common diseases of the feline oral cavity. While evidence is emerging that FCGS is caused by gingival inflammation initiated and perpetuated by the oral microbiota, little is known in this regard for FORL. Feline calicivirus (FCV) has been associated with the presence of FCGS and is thought to play a role in the initiation of this disease. In this study, the incidence of FCV was investigated in cats with FORL and FCGS, and compared to unaffected controls. FCV was detected by viral culture. The incidence of FCV was as follows: 6 (24.0%) of 24 control cats, 9 (22.5%) of 40 cats with FORL and 15 (60.0%) of 25 cats with FCGS were positive for FCV. There was a significant difference in FCV incidence between all the groups (p = 0.003) but none between the control group and the FORL group. However, significant differences were observed in the incidence of FCV between control and FCGS (p = 0.010) and between FORL and FCGS (p = 0.006). It is concluded that although FCV may be associated with FCGS, it appears unlikely to play a role in FORL

    Identification of bacteria on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties by 16S rRNA gene sequencing and by microbiological culture

    Get PDF
    It has been postulated that bacteria attached to the surface of prosthetic hip joints can cause localised inflammation, resulting in failure of the replacement joint. However, diagnosis of infection is difficult with traditional microbiological culture methods, and evidence exists that highly fastidious or non-cultivable organisms have a role in implant infections. The purpose of this study was to use culture and culture-independent methods to detect the bacteria present on the surface of prosthetic hip joints removed during revision arthroplasties. Ten consecutive revisions were performed by two surgeons, which were all clinically and radiologically loose. Five of the hip replacement revision surgeries were performed because of clinical infections and five because of aseptic loosening. Preoperative and perioperative specimens were obtained from each patient and subjected to routine microbiological culture. The prostheses removed from each patient were subjected to mild ultrasonication to dislodge adherent bacteria, followed by aerobic and anaerobic microbiological culture. Bacterial DNA was extracted from each sonicate and the 16S rRNA gene was amplified with the universal primer pair 27f/1387r. All 10 specimens were positive for the presence of bacteria by both culture and PCR. PCR products were then cloned, organised into groups by RFLP analysis and one clone from each group was sequenced. Bacteria were identified by comparison of the 16S rRNA gene sequences obtained with those deposited in public access sequence databases. A total of 512 clones were analysed by RFLP analysis, of which 118 were sequenced. Culture methods identified species from the genera Leifsonia (54.3%), Staphylococcus (21.7%), Proteus (8.7%), Brevundimonas (6.5%), Salibacillus (4.3%), Methylobacterium (2.2%) and Zimmermannella (2.2%). Molecular detection methods identified a more diverse microflora. The predominant genus detected was Lysobacter, representing 312 (60.9%) of 512 clones analysed. In all, 28 phylotypes were identified: Lysobacter enzymogenes was the most abundant phylotype (31.4%), followed by Lysobacter sp. C3 (28.3%), gamma proteobacterium N4-7 (6.6%), Methylobacterium SM4 (4.7%) and Staphylococcus epidermidis (4.7%); 36 clones (7.0%) represented uncultivable phylotypes. We conclude that a diverse range of bacterial species are found within biofilms on the surface of clinically infected and non-infected prosthetic hip joints removed during revision arthroplasties

    Evaluation of tissue levels of Toll-like receptors and cytokine mRNAs associated with bovine periodontitis and oral health

    Get PDF
    Bovine periodontitis is a progressive and purulent infection associated with an anaerobic subgingival biofilm, which induces irreversible damage to the dentition of affected animals. The aetiopathogenesis of the disease is unclear and treatment and control of the disease process in cattle are almost unknown. The aim of this study was to investigate the innate immune response by quantifying expression of Toll-like receptor (TLR) and cytokine genes in gingival tissue samples from cattle with and without periodontitis. Postmortem biopsies of gingival tissues were collected from 20 cattle with periodontitis and 20 cattle with no clinical signs of periodontal lesions. Tissue expression of TLR2, TLR4, TNF-α, IFN-γ, IL-1β and IL-4 genes were determined using quantitative real-time PCR. Statistically significant increases in mRNA levels encoding TLR2 (p = 0.025), TLR4 (p = 0.037), TNF-α (p = 0.025), IFN-γ (p = 0.014), IL-1β (p < 0.001) and IL-4 (p = 0.014) were observed in animals with periodontitis when compared to periodontally healthy animals. Increased levels of TLRs and inflammatory cytokines in periodontal tissue indicate an induction of the innate immune response of cattle and suggest that a substantial microbial challenge may be involved in the aetiopathogenesis of bovine periodontitis

    The oral microbiome of denture wearers is influenced by natural dentition

    Get PDF
    Objectives: The composition of dental plaque has been well defined, whereas currently there is limited understanding of the composition of denture plaque and how it directly influences denture related stomatitis (DS). The aims of this study were to compare the microbiomes of denture wearers, and to understand the implications of these towards inter-kingdom and host-pathogen interactions within the oral cavity. Methods: Swab samples were obtained from 123 participants wearing either a complete or partial denture; the bacterial composition of each sample was determined using bar-coded illumina MiSeq sequencing of the bacterial hypervariable V4 region of 16S rDNA. Sequencing data processing was undertaken using QIIME, clustered in Operational Taxonomic Units (OTUs) and assigned to taxonomy. The dentures were sonicated to remove the microbial flora residing on the prosthesis, sonicate was then cultured using diagnostic colorex Candida media. Samples of unstimulated saliva were obtained and antimicrobial peptides (AMP) levels were measured by ELISA. Results: We have shown that dental and denture plaques are significantly distinct both in composition and diversity and that the oral microbiome composition of a denture wearer is variable and is influenced by the location within the mouth. Dentures and mucosa were predominantly made up of Bacilli and Actinobacteria. Moreover, the presence of natural teeth has a significant impact on the overall microbial composition, when compared to the fully edentulous. Furthermore, increasing levels of Candida spp. positively correlate with Lactobacillus spp. AMPs were quantified, though showed no specific correlations. Conclusions: This is the first study to provide a detailed understanding of the oral microbiome of denture wearers and has provided evidence that DS development is more complex than simply a candidal infection. Both fungal and bacterial kingdoms clearly play a role in defining the progression of DS, though we were unable to show a defined role for AMPs

    Microbiomes associated with bovine periodontitis and oral health

    Get PDF
    Periodontitis is an infectious polymicrobial, immuno-inflammatory disease of multifactorial aetiology that has an impact on the health, production and welfare of ruminants. The objective of the present study was to determine the microbial profiles present in the gingival sulcus of cattle considered periodontally healthy and in the periodontal pocket of animals with periodontitis lesions using high-throughput bacterial 16S rRNA gene sequencing. Subgingival biofilm samples were collected from 40 cattle with periodontitis and 38 periodontally healthy animals. In total, 1923 OTUs were identified and classified into 395 genera or higher taxa. Microbial profiles in health differed significantly from periodontitis in their composition (p < 0.0001, F = 5.30; PERMANOVA) but no statistically significant differences were observed in the diversity of healthy and periodontitis microbiomes. The most prevalent taxa in health were Pseudomonas, Burkholderia and Actinobacteria, whereas in disease these were Prevotella, Fusobacterium and Porphyromonas. The most discriminative taxa in health were Gastranaerophilales, Planifilum and Burkholderia, and in disease these were Elusimicrobia, Synergistes and Propionivibrio. In conclusion, statistically significant difference exists between the microbiome in bovine oral health and periodontitis, with populations showing 72.6% dissimilarity. The diversity of the bacteria found in health and periodontitis were similar and bacteria recognised as periodontal pathogens showed increased abundance in disease. In this context, the main components of bacterial homeostasis in the biofilm of healthy sites and of dysbiosis in periodontal lesions provide unprecedented indicators for the evolution of knowledge about bovine periodontitis

    Elevated pro-inflammatory cytokines and chemokines in saliva of cats with feline odontoclastic resorptive lesion

    Get PDF
    Feline odontoclastic resorptive lesion (FORL) is an inflammatory oral disease of unknown aetiopathogenesis that affects between 20% to 75% of cats. Twenty immune-associated molecules were measured in saliva of 25 healthy and 40 cats with FORL using a multiplex assay. No statistically significant differences were observed in the levels of these proteins between the healthy group and the diseased group of cats. A two-step cluster analysis of the oral microbiome and salivary cytokine data identified two subgroups of cats with FORL: FORL-1 (subset of cats with a less diverse oral microbiome) and FORL-2 (diseased cats with a microbiome similar to that of healthy animals). The level of some key proinflammatory cytokines (IL-1β, IL-12p40) and chemokines (IL-8, RANTES, KC) were significantly higher in the FORL-1 subgroup than in the FORL-2 subgroup and the healthy group. In addition, TNF-α levels were greater in the FORL-1 subgroup than in the FORL-2 subgroup. These increases in pro-inflammatory cytokines and chemokines indicate active ongoing inflammation that may promote the osteoclastic/odontoclastic activity associated with FORL
    • …
    corecore