28 research outputs found

    Principles, limitations, and performance of multiconjugate adaptive optics

    Get PDF
    Multi-Conjugate Adaptive Optics (MCAO) holds the promise of moderate to large adaptively compensated field of view with uniform image quality. This paper is a first effort to analyze the fundamental limitations of such systems, and that are mainly related to the finite number of deformable mirrors and guide stars. We demonstrate that the ultimate limitation is due to the vertical discretization of the correction. This effect becomes more severe quite rapidly with increasing compensated field of view or decreasing wavelength, but does not depend at first order on the telescope aperture. We also discuss limitations associated with the use of laser guide stars and ELT related issues

    Curvature-based laser guide star adaptive optics system for Gemini South

    Get PDF
    The Gemini Observatory and University of Hawaii are planning to install an 85-element curvature adaptive optics system with a laser guide star system on its Cerro Pachon telescope in 2001. This paper discusses the motivation, issues on implementing a laser guide star with a curvature-based system, the implementation of a laser guide star based on a commercially available 2W ring-dye laser, and the expected performance of the system. Detailed simulations show very promising results for system performance down to natural guide star magnitudes of 19 - 20th magnitude. The performance cross- over point between NGS and LGS is between 13 - 16th magnitude depending on the performance parameter of interest (e.g. Strehl, energy through a slit, etc.)

    Principles, limitations, and performance of multiconjugate adaptive optics

    Get PDF
    Multi-Conjugate Adaptive Optics (MCAO) holds the promise of moderate to large adaptively compensated field of view with uniform image quality. This paper is a first effort to analyze the fundamental limitations of such systems, and that are mainly related to the finite number of deformable mirrors and guide stars. We demonstrate that the ultimate limitation is due to the vertical discretization of the correction. This effect becomes more severe quite rapidly with increasing compensated field of view or decreasing wavelength, but does not depend at first order on the telescope aperture. We also discuss limitations associated with the use of laser guide stars and ELT related issues

    Curvature-based laser guide star adaptive optics system for Gemini South

    Get PDF
    The Gemini Observatory and University of Hawaii are planning to install an 85-element curvature adaptive optics system with a laser guide star system on its Cerro Pachon telescope in 2001. This paper discusses the motivation, issues on implementing a laser guide star with a curvature-based system, the implementation of a laser guide star based on a commercially available 2W ring-dye laser, and the expected performance of the system. Detailed simulations show very promising results for system performance down to natural guide star magnitudes of 19 - 20th magnitude. The performance cross- over point between NGS and LGS is between 13 - 16th magnitude depending on the performance parameter of interest (e.g. Strehl, energy through a slit, etc.)

    Gemini multi-conjugate adaptive optics system review II: Commissioning, operation and overall performance

    Full text link
    The Gemini Multi-conjugate Adaptive Optics System - GeMS, a facility instrument mounted on the Gemini South telescope, delivers a uniform, near diffraction limited images at near infrared wavelengths (0.95 microns- 2.5 microns) over a field of view of 120 arc seconds. GeMS is the first sodium layer based multi laser guide star adaptive optics system used in astronomy. It uses five laser guide stars distributed on a 60 arc seconds square constellation to measure for atmospheric distortions and two deformable mirrors to compensate for it. In this paper, the second devoted to describe the GeMS project, we present the commissioning, overall performance and operational scheme of GeMS. Performance of each sub-system is derived from the commissioning results. The typical image quality, expressed in full with half maximum, Strehl ratios and variations over the field delivered by the system are then described. A discussion of the main contributor to performance limitation is carried-out. Finally, overheads and future system upgrades are described.Comment: 20 pages, 11 figures, accepted for publication in MNRA

    Haffner 16: A Young Moving Group in the Making

    No full text
    International audienc

    Haffner 16: A Young Moving Group in the Making

    No full text
    International audienc
    corecore