14 research outputs found
Rapid and sensitive detection of Citrus Bacterial Canker by loop-mediated isothermal amplification combined with simple visual evaluation methods
<p>Abstract</p> <p>Background</p> <p>Citrus Bacterial Canker (CBC) is a major, highly contagious disease of citrus plants present in many countries in Asia, Africa and America, but not in the Mediterranean area. There are three types of Citrus Bacterial Canker, named A, B, and C that have different genotypes and posses variation in host range within citrus species. The causative agent for type A CBC is <it>Xanthomonas citri </it>subsp. <it>citri</it>, while <it>Xanthomonas fuscans </it>subsp. <it>aurantifolii</it>, strain B causes type B CBC and <it>Xanthomonas fuscans </it>subsp. <it>aurantifolii </it>strain C causes CBC type C. The early and accurate identification of those bacteria is essential for the protection of the citrus industry. Detection methods based on bacterial isolation, antibodies or polymerase chain reaction (PCR) have been developed previously; however, these approaches may be time consuming, laborious and, in the case of PCR, it requires expensive laboratory equipment. Loop-mediated isothermal amplification (LAMP), which is a novel isothermal DNA amplification technique, is sensitive, specific, fast and requires no specialized laboratory equipment.</p> <p>Results</p> <p>A loop-mediated isothermal amplification assay for the diagnosis of Citrus Bacterial Canker (CBC-LAMP) was developed and evaluated. DNA samples were obtained from infected plants or cultured bacteria. A typical ladder-like pattern on gel electrophoresis was observed in all positive samples in contrast to the negative controls. In addition, amplification products were detected by visual inspection using SYBRGreen and using a lateral flow dipstick, eliminating the need for gel electrophoresis. The sensitivity and specificity of the assay were evaluated in different conditions and using several sample sources which included purified DNA, bacterium culture and infected plant tissue. The sensitivity of the CBC-LAMP was 10 fg of pure <it>Xcc </it>DNA, 5 CFU in culture samples and 18 CFU in samples of infected plant tissue. No cross reaction was observed with DNA of other phytopathogenic bacteria. The assay was capable of detecting CBC-causing strains from several geographical origins and pathotypes.</p> <p>Conclusions</p> <p>The CBC-LAMP technique is a simple, fast, sensitive and specific method for the diagnosis of Citrus Bacterial Canker. This method can be useful in the phytosanitary programs of the citrus industry worldwide.</p
Molecular mechanism of protrusion formation during cell-to-cell spread of Listeria
The bacterial pathogen Listeria monocytogenes spreads within human tissues using a motility
process dependent on the host actin cytoskeleton. Cell-to-cell spread involves the ability of
motile bacteria to remodel the host plasma membrane into protrusions, which are internalized
by neighboring cells. Recent results indicate that formation of Listeria protrusions in
polarized human cells involves bacterial antagonism of a host signaling pathway comprised
of the scaffolding protein Tuba and its effectors N-WASP and Cdc42. These three human
proteins form a complex that generates tension at apical cell junctions. Listeria relieves this
tension and facilitates protrusion formation by secreting a protein called InlC. InlC interacts
with a Src Homology 3 (SH3) domain in Tuba, thereby displacing N-WASP from this
domain. Interaction of InlC with Tuba is needed for efficient Listeria spread in cultured
human cells and infected animals. Recent structural data has elucidated the mechanistic details of InlC/Tuba interaction, revealing that InlC and N-WASP compete for partly
overlapping binding surfaces in the Tuba SH3 domain. InlC binds this domain with higher
affinity than N-WASP, explaining how InlC is able to disrupt Tuba/N-WASP complexes.Grants from the National Institutes of Health (R01AI085072) and the Marsden Fund of the Royal Society of New Zealand (UOO1003), Medical Research Council of South Africa, the National Research Foundation of South Africa and previously by the Helmholtz Centre for Infection Research, Braunschweig, Germany.http://www.frontiersin.org/Cellular_and_Infection_Microbiologyhb201
High-quality full genome assembly of historic Xylella fastidiosa strains from ICMP collection using a hybrid sequencing approach
High-quality complete genomes of five Xylella fastidiosa strains were assembled by combining Nanopore and Illumina sequencing data. Among these, International Collection of Micro-organisms from Plants (ICMP) 8731, ICMP 8742 and ICMP 8745 belong to subspecies fastidiosa while ICMP 8739 and ICMP 8740 were determined as subspecies multiplex. The strains were further classified into sequence types
Controlled synthesis of the DSF cell–cell signal is required for biofilm formation and virulence in Xanthomonas campestris
Virulence of the black rot pathogen Xanthomonas campestris pv. campestris (Xcc) is regulated by cell–cell signalling involving the diffusible signal factor DSF. Synthesis and perception of DSF require products of genes within the rpf cluster (for regulation of pathogenicity factors). RpfF directs DSF synthesis whereas RpfC and RpfG are involved in DSF perception. Here we have examined the role of the rpf/DSF system in biofilm formation in minimal medium using confocal laser-scanning microscopy of GFP-labelled bacteria. Wild-type Xcc formed microcolonies that developed into a structured biofilm. In contrast, an rpfF mutant (DSF-minus) and an rpfC mutant (DSF overproducer) formed only unstructured arrangements of bacteria. A gumB mutant, defective in xanthan biosynthesis, was also unable to develop the typical wild-type biofilm. Mixed cultures of gumB and rpfF mutants formed a typical biofilm in vitro. In contrast, in mixed cultures the rpfC mutant prevented the formation of the structured biofilm by the wild-type and did not restore wild-type biofilm phenotypes to gumB or rpfF mutants. These effects on structured biofilm formation were correlated with growth and disease development by Xcc strains in Nicotiana benthamiana leaves. These findings suggest that DSF signalling is finely balanced during both biofilm formation and virulence
Polyoxygenated germacranes from Daucus carota and their antimalarial transmission blocking activity
Chemical analysis of the aerial parts obtained from a Tunisian specimen of Daucus carota yielded to the isolation of six undescribed polyoxygenated germacranes and one elemanolide, along with one known metabolite. The stereostructures of the undescribed compounds were determined by extensive spectroscopic analysis including 1D and 2D NMR and HR-ESI-MS analysis. Due to their structural similarity with the Plasmodium transmission-blocking agent daucovirgolide G, the isolated metabolites were evaluated for their inhibitory activity on the development of Plasmodium early sporogonic stages. Three compounds proved to inhibit ookinete formation showing a good transmission blocking efficacy, but the low potency exhibited by these compounds when compared to daucovirgolide G further supports the observation that strict structural requirements do exist for the antimalarial activity of germacranolides
Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick
Background: Citrus Huanglongbing (HLB) is the most devastating bacterial citrus disease worldwide. Three Candidatus Liberibacter species are associated with different forms of the disease: Candidatus Liberibacter asiaticus, Candidatus Liberibacter americanus and Candidatus Liberibacter africanus. Amongst them, Candidatus Liberibacter asiaticus is the most widespread and economically important. These Gram-negative bacterial plant pathogens are phloem-limited and vectored by citrus psyllids. The current management strategy of HLB is based on early and accurate detection of Candidatus Liberibacter asiaticus in both citrus plants and vector insects. Nowadays, real time PCR is the method of choice for this task, mainly because of its sensitivity and reliability. However, this methodology has several drawbacks, namely high equipment costs, the need for highly trained personnel, the time required to conduct the whole process, and the difficulty in carrying out the detection reactions in field conditions.
Results: A recent DNA amplification technique known as Loop Mediated Isothermal Amplification (LAMP) was adapted for the detection of Candidatus Liberibacter asiaticus. This methodology was combined with a Lateral Flow Dipstick (LFD) device for visual detection of the resulting amplicons, eliminating the need for gel electrophoresis. The assay was highly specific for the targeted bacterium. No cross-reaction was observed with DNA from any of the other phytopathogenic bacteria or fungi assayed. By serially diluting purified DNA from an infected plant, the sensitivity of the assay was found to be 10 picograms. This sensitivity level was proven to be similar to the values obtained running a real time PCR in parallel. This methodology was able to detect Candidatus Liberibacter asiaticus from different kinds of samples including infected citrus plants and psyllids.
Conclusions: Our results indicate that the methodology here reported constitutes a step forward in the development of new tools for the management, control and eradication of this destructive citrus disease. This system constitutes a potentially field-capable approach for the detection of the most relevant HLB-associated bacteria in plant material and psyllid vectors.Fil: Rigano, Luciano Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencias y Tecnología "Dr. Cesar Milstein"; Argentina. University of Otago. Department of Microbiology and Immunology; Nueva ZelandaFil: Malamud, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencias y Tecnología "Dr. Cesar Milstein"; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Orce, Ingrid Georgina. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Filippone, María Paula. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Marano, Maria Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Do Amaral, Alexandre Morais. Ministerio Da Agricultura Pecuaria E Abastecimento de Brasil. Empresa Brasileira de Pesquisa Agropecuaria; BrasilFil: Castagnaro, Atilio Pedro. Instituto de Tecnología Agroindustrial del Noroeste Argentino. Estación Experimental Agroindustrial Obispo Colombres; ArgentinaFil: Vojnov, Adrian Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Ciencias y Tecnología "Dr. Cesar Milstein"; Argentin
All‐in‐one Xylella detection and identification: A nanopore sequencing‐compatible conventional PCR
Xylella fastidiosa is a plant-pathogenic bacterium that poses a serious threat to the production of economically important plant species including grapes, almonds, olives and a broad range of amenity plants, causing significant economic losses worldwide. While multiple molecular detection assays have been developed for X. fastidiosa, there is a lack of molecular tools available for detection and differentiation of the closely related pear pathogen, Xylella taiwanensis. In this study, we present a novel conventional PCR assay with primers that can amplify both Xylella species. The amplified product could be sequenced and used for discrimination between the two species and the subspecies within the fastidiosa species. This PCR assay was designed using a genome-informed approach to target the ComEC/Rec2 gene of both Xylella species, ensuring a higher specificity than other previously developed PCR assays. A test performance study across five national plant diagnostic laboratories in Australia and New Zealand demonstrated this assay's high sensitivity and specificity to all known species and subspecies within the Xylella genus. This PCR assay can be used for Xylella identification at the species and subspecies level and is compatible with Sanger sequencing and nanopore sequencing for rapid turnaround time. The newly developed conventional PCR assay presented here offers rapid detection and accurate identification of both Xylella species from plant, insect vector or bacterial samples, enabling timely implementation of biosecurity measures or disease management responses