1,365 research outputs found
Magnetic correlations in La(2-x)Sr(x)CuO4 from NQR relaxation and specific heat
La-139 and Cu-63 Nuclear Quadrupole Resonance (NQR) relaxation measurements in La(2-x)Sr(x)CuO4 for O = to or less than 0.3 and in the temperature range 1.6 + 450 K are analyzed in terms of Cu(++) magnetic correlations and dynamics. It is described how the magnetic correlations that would result from Cu-Cu exchange are reduced by mobile charge defects related to x-doping. A comprehensive picture is given which explains satisfactorily the x and T dependence of the correlation time, of the correlation length and of the Neel temperature T(sub n)(x) as well as being consistent with known electrical resistivity and magnetic susceptibility measurements. It is discussed how, in the superconducting samples, the mobile defects also cause the decrease, for T yields T(sub c)(+) of the hyperfine Cu electron-nucleus effective interaction, leading to the coexistence of quasi-localized, reduced magnetic moments from 3d Cu electrons and mobile oxygen p-hole carriers. The temperature dependence of the effective hyperfine field around the superconducting transition yields an activation energy which could be related to the pairing energy. New specific heat measurements are also presented and discussed in terms of the above picture
Anelastic relaxation and La NQR in LaSrCuO around the critical Sr content x=0.02
Anelastic relaxation and La NQR relaxation measurements in
LaSrCuO for Sr content x around 2 and 3 percent, are presented
and discussed in terms of spin and lattice excitations and ordering processes.
It is discussed how the phase diagram of LaSrCuO at the
boundary between the antiferromagnetic (AF) and the spin-glass phase (x = 0.02)
could be more complicate than previous thought, with a transition to a
quasi-long range ordered state at T = 150 K, as indicated by recent neutron
scattering data. On the other hand, the La NQR spectra are compatible
with a transition to a conventional AF phase around T = 50 K, in agreement with
the phase diagram commonly accepted in the literature. In this case the
relaxation data, with a peak of magnetic origin in the relaxation rate around
150 K at 12 MHz and the anelastic counterparts around 80 K in the kHz range,
yield the first evidence in LaSrCuO of freezing involving
simultaneously lattice and spin excitations. This excitation could correspond
to the motion of charged stripes.Comment: 10 pages, 8 figure
Spin dynamics in hole-doped two-dimensional S=1/2 Heisenberg antiferromagnets: ^{63}Cu NQR relaxation in La_{2-x}Sr_xCuO_4 for
The effects on the correlated Cu^{2+} S = 1/2 spin dynamics in the
paramagnetic phase of La_{2-x}Sr_xCuO_4 (for ) due to the
injection of holes are studied by means of ^{63}Cu NQR spin-lattice relaxation
time T_1 measurements. The results are discussed in the framework of the
connection between T_1 and the in-plane magnetic correlation length
. It is found that at high temperatures the system remains in
the renormalized classical regime, with a spin stiffness constant
reduced by small doping to an extent larger than the one due to Zn doping. For
the effect of doping on appears to level off. The
values for derived from T_1 for K are much larger
than the ones estimated from the temperature behavior of sublattice
magnetization in the ordered phase (). It is argued that these
features are consistent with the hypothesis of formation of stripes of
microsegregated holes.Comment: 10 pages, 3 figure
Novel properties of the Kohn-Sham exchange potential for open systems: application to the two-dimensional electron gas
The properties of the Kohn-Sham (KS) exchange potential for open systems in
thermodynamical equilibrium, where the number of particles is non-conserved,
are analyzed with the Optimized Effective Potential (OEP) method of Density
Functional Theory (DFT) at zero temperature. The quasi two-dimensional electron
gas (2DEG) is used as an illustrative example. The main findings are that the
KS exchange potential builds a significant barrier-like structure under slight
population of the second subband, and that both the asymptotic value of the KS
exchange potential and the inter-subband energy jump discontinuously at the
one-subband (1S) -> two-subband (2S) transition. The results obtained in this
system offer new insights on open problems of semiconductors, such as the
band-gap underestimation and the band-gap renormalization by photo-excited
carriers.Comment: 7 pages, 3 figures, uses epl.cls(included), accepted for publication
in Europhysics Letter
Observation of the cluster spin-glass phase in La_{2-x}Sr_{x}CuO_{4} by anelastic spectroscopy
An increase of the acoustic absorption is found in La_{2-x}Sr_{x}CuO_{4} (x =
0.019, 0.03 and 0.06) close to the temperatures at which freezing of the spin
fluctuations in antiferromagnetic-correlated clusters is expected to occur. The
acoustic absorption is attributed to changes of the sizes of the quasi-frozen
clusters induced by the vibration stress through magnetoelastic coupling.Comment: LaTeX, 2 PostScript figures, submitted to Phys. Rev.
On the "spin-freezing" mechanism in underdoped superconducting cuprates
The letter deals with the spin-freezing process observed by means of NMR-NQR
relaxation or by muon spin rotation in underdoped cuprate superconductors. This
phenomenon, sometimes referred as coexistence of antiferromagnetic and
superconducting order parameters, is generally thought to result from randomly
distributed magnetic moments related to charge inhomogeneities (possibly
stripes) which exhibit slowing down of their fluctuations on cooling below
T . Instead, we describe the experimental findings as due to fluctuating,
vortex-antivortex, orbital currents state coexisting with d-wave
superconducting state. A direct explanation of the experimental results, in
underdoped YCaBaCuO and LaSrCuO,
is thus given in terms of freezing of orbital current fluctuations
- …