28 research outputs found

    The development of in vitro organotypic 3D vulvar models to study tumor-stroma interaction and drug efficacy

    Get PDF
    Background Vulvar squamous cell carcinoma (VSCC) is a rare disease with a poor prognosis. To date, there's no proper in vitro modeling system for VSCC to study its pathogenesis or for drug evaluation.Methods We established healthy vulvar (HV)- and VSCC-like 3D full thickness models (FTMs) to observe the tumor-stroma interaction and their applicability for chemotherapeutic efficacy examination. VSCC-FTMs were developed by seeding VSCC tumor cell lines (A431 and HTB117) onto dermal matrices harboring two NF subtypes namely papillary fibroblasts (PFs) and reticular fibroblasts (RFs), or cancer-associated fibroblasts (CAFs) while HV-FTMs were constructed with primary keratinocytes and fibroblasts isolated from HV tissues.Results HV-FTMs highly resembled HV tissues in terms of epidermal morphogenesis, basement membrane formation and collagen deposition. When the dermal compartment shifted from PFs to RFs or CAFs in VSCC-FTMs, tumor cells demonstrated more proliferation, EMT induction and stemness. In contrast to PFs, RFs started to lose their phenotype and express robust CAF-markers alpha-SMA and COL11A1 under tumor cell signaling induction, indicating a favored 'RF-to-CAF' transition in VSCC tumor microenvironment (TME). Additionally, chemotherapeutic treatment with carboplatin and paclitaxel resulted in a significant reduction in tumor-load and invasion in VSCC-FTMs.Conclusion We successfully developed in vitro 3D vulvar models mimicking both healthy and tumorous conditions which serve as a promising tool for vulvar drug screening programs. Moreover, healthy fibroblasts demonstrate heterogeneity in terms of CAF-activation in VSCC TME which brings insights in the future development of novel CAF-based therapeutic strategies in VSCC.Cervix cance

    Isothermal and Cyclic Aging of 310S Austenitic Stainless Steel

    Get PDF
    Unusual damage and high creep strain rates have been observed on components made of 310S stainless steel subjected to thermal cycles between room temperature and 1143 K (870 °C). Microstructural characterization of such components after service evidenced high contents in sigma phase which formed first from δ-ferrite and then from γ-austenite. To get some insight into this microstructural evolution, isothermal and cyclic aging of 310S stainless steel has been studied experimentally and discussed on the basis of numerical simulations. The higher contents of sigma phase observed after cyclic agings than after isothermal treatments are clearly associated with nucleation triggered by thermal cycling

    Inflammatory and Antimicrobial Responses to Methicillin-Resistant Staphylococcus aureus in an In Vitro Wound Infection Model

    No full text
    Immunogenetics and cellular immunology of bacterial infectious disease

    Onderzoekswijzer. Inventarisatie onderzoek veteranenzorg

    No full text

    Onderzoekswijzer. Inventarisatie onderzoek veteranenzorg

    No full text

    Onderzoekswijzer. Inventarisatie onderzoek veteranenzorg.

    No full text
    corecore