498 research outputs found

    Bistability and regular spatial patterns in arid ecosystems.

    Get PDF
    A variety of patterns observed in ecosystems can be explained by resource–concentration mechanisms. A resource–concentration mechanism occurs when organisms increase the lateral flow of a resource toward them, leading to a local concentration of this resource and to its depletion from areas farther away. In resource–concentration systems, it has been proposed that certain spatial patterns could indicate proximity to discontinuous transitions where an ecosystem abruptly shifts from one stable state to another. Here, we test this hypothesis using a model of vegetation dynamics in arid ecosystems. In this model, a resource– concentration mechanism drives a positive feedback between vegetation and soil water availability. We derived the conditions leading to bistability and pattern formation. Our analysis revealed that bistability and regular pattern formation are linked in our model. This means that, when regular vegetation patterns occur, they indicate that the system is along a discontinuous transition to desertification. Yet, in real systems, only observing regular vegetation patterns without identifying the pattern-driving mechanism might not be enough to conclude that an ecosystem is along a discontinuous transition because similar patterns can emerge from different ecological mechanisms

    Nutrients and Hydrology Indicate the Driving Mechanisms of Peatland Surface Patterning

    Get PDF
    Peatland surface patterning motivates studies that identify underlying structuring mechanisms. Theoretical studies so far suggest that different mechanisms may drive similar types of patterning. The long time span associated with peatland surface pattern formation, however, limits possibilities for empirically testing model predictions by field manipulations. Here, we present a model that describes spatial interactions between vegetation, nutrients, hydrology, and peat. We used this model to study pattern formation as driven by three different mechanisms: peat accumulation, water ponding, and nutrient accumulation. By on-and-off switching of each mechanism, we created a full-factorial design to see how these mechanisms affected surface patterning (pattern of vegetation and peat height) and underlying patterns in nutrients and hydrology. Results revealed that different combinations of structuring mechanisms lead to similar types of peatland surface patterning but contrasting underlying patterns in nutrients and hydrology. These contrasting underlying patterns suggest that the presence or absence of the structuring mechanisms can be identified by relatively simple short-term field measurements of nutrients and hydrology, meaning that longer-term field manipulations can be circumvented. Therefore, this study provides promising avenues for future empirical studies on peatland patternin

    Resource contrast in patterned peatlands increases along a climatic gradient

    Get PDF
    Copyright by the Ecological Society of America 2010, for personal or educational use only. Article is available at <http://dx.doi.org/10.1890/09-1313.1

    Pipeline and Canal Downstream Control System For Recirculation - Patterson ID Case Study

    Get PDF
    Patterson ID in Central California has five long, along-the-contour lateral canals that flow northward from a main canal. The main canal operates on downstream control, providing excellent flexibility to heads of the laterals. The lateral canals operate with manual upstream control and have little storage. The classic tail-ender problem existed; spill from the tail end was necessary to avoid under-supplying tail-end customers. To eliminate the spill and to provide better flexibility, a system was designed and constructed to tie the ends of the five laterals together with pipes and pumps, with one central regulating reservoir. The automatic control system allows water to exit a lateral pool by gravity if that particular lateral end has too high a water level. Conversely, if the most downstream pool on a lateral canal drops, a VFD-equipped pump from a downhill lateral automatically supplies the correct flow rate to re-establish a constant water level. The same pipe is used for flow in both directions. Any excess flow from the system as a whole is automatically routed to the reservoir. Any deficit from the system as a whole is removed from the reservoir. The complete system is monitored by SCADA, so operators know where excesses or deficits occur, and can adjust flows at the heads of the laterals to compensate for mismatches at the ends of the laterals. The system has worked successfully for three irrigation seasons. The paper describes the control philosophy, design, costs, challenges, and benefits

    Catastrophic vegetation dynamics and soil degradation in semi-arid grazing systems

    Get PDF
    When vegetation is drastically reduced as a result of drought or an increase in herbivore numbers, it does not simply recover if periods with normal rainfall follow or if herbivores are removed. These are commonly recognized catastrophic phenomena of semi-arid grazing systems in general and of the African Sahel in particular. The main aims of this thesis are to provide an effective explanation of the catastrophic properties of vegetation dynamics in these systems and to predict under which conditions they might be expected.We start with a description of Sahelian rangeland vegetation dynamics, to reveal its catastrophic properties. This exercise appeared a very useful first step in the growth of our ideas about catastrophic vegetation dynamics because: 1) it translated rather vague concepts into a verifiable format by deducing hypotheses about the conditions under which catastrophic vegetation dynamics might be expected, and 2) it generated the notion that soil degradation could somehow be an important factor attributing to catastrophic vegetation dynamics in semi-arid grazing systems. This is in contrast with models that emphasize herbivore feeding characteristics or plant competition as possible mechanisms underlying catastrophic vegetation dynamics. We tested the hypothesis that soil degradation, i.e. soil erosion by run-off and wind and the consequent loss of water and nutrients, is sufficient to explain catastrophic vegetation dynamics by mathematical modelling.Our model studies indeed show that soil degradation can effectively explain the catastrophic properties of semi-arid grazing systems. Soil degradation can cause a positive feedback between reduced resource (soil water and nutrients) availability and reduced vegetation biomass which may lead to collapse of the system. This positive feedback loop can be triggered by grazing. We argue on the basis of a large body of literature that this is an important mechanism causing catastrophic vegetation dynamics in semi-arid grazing systems. Furthermore, our model studies predict for which site-specific properties catastrophic vegetation dynamics may be expected, that is on loamy or clayey soils in case of water-limited vegetation biomass production, and on sandy soils in case of nutrient-limited biomass production. This is because sandy soils have higher water infiltration rates but are more vulnerable to nutrient loss through erosion than loamy or clayey soils.Based on our models, we hypothesized that the removal of aboveground herbaceous biomass would lead to a reduced soil water content and biomass production because of reduced water infiltration and increased run-off. We tested this hypothesis in a semi-arid savanna in Tanzania (East Africa). Indeed, as a consequence of biomass removal, a reduction in soil water content and biomass production occurred. But it appeared that increased loss of soil water through increased soil evaporation as a consequence of litter removal ultimately outbalanced all other effects on soil water content. Several factors might have contributed to the importance of increased soil evaporation, overriding that of reduced water infiltration and increased run-off. The soil in the research area was a sandy loam, with higher water infiltration rates than soils with a lower percentage sand and higher perentage clay, while rainfall primarily occurred in light showers. Thus, under these conditions, when the positive feedback between reduced water infiltration and reduced biomass does not operate, another positive feedback that is between increased soil evaporation and reduced biomass may become prominent.We further hypothesized that at a certain range of herbivore impact small initial differences in plant cover and amount of soil resources can magnify to alternative states which persist in time due to positive plant-soil feedbacks. We tested this hypothesis in a semi-arid grazing system in Burkina Faso (West Africa), where we studied vegetation patchiness along a gradient of herbivore impact. Indeed, the occurrence and likely persistence of a spatial pattern of vegetated patches alternating with bare soil at a certain range of herbivore impact could be explained by the positive plant-soil feedback between vegetation biomass and water infiltration.We stress the general applicability of our models by comparing catastrophic vegetation dynamics of the semi-arid grasslands of the African Sahel with the arctic salt marshes along the Hudson Bay in Canada. We argue that in both systems, an increase of herbivory triggered a catastrophic vegetation shift, which was ultimately caused by a positive plant-soil feedback, leading to desertification.One of our model assumptions was that herbivore density is not regulated by vegetation biomass. In the general discussion, I investigated the influence of a positive feedback between vegetation biomass and water infiltration on the dynamics of a plant-herbivore system, where herbivore density depends on vegetation biomass. As a consequence of the positive feedback and if herbivore reproduction is efficient, I predict that the plant-herbivore system could destabilize and collapse. In this chapter I also stress the practical relevance of our studies as our approach may finally lead to objective ecological criteria on which pastoral managers can base their decision how to evade the hazard of degradation of their rangelands.I highlight three topics which deserve more priority on the reseach agenda concerning semi-arid grazing systems in the near future. Hereby, I want to stress that it is important to put experimental and empirical studies into a clear theoretical framework, whereby mathematical modelling should play an important role. The three topics are:spatial heterogeneity and vegetation pattern formation,facilitation and competition between functional plant groups within the herbaceous layer andthe effects of positive plant-soil feedbacks on herbivore dynamics.</OL

    Intra-seasonal rainfall variability and herbivory affect the interaction outcome of two dryland plant species

    Get PDF
    Increases in drought frequency in combination with overgrazing may result in degradation of (semi-) arid ecosystems. Facilitative interactions between plants are a key mechanism in preventing degradation, but it is poorly understood how they respond to increased stress by combined drought and herbivory. In this study, we used an ecohydrological model, to simulate the plant growth of two plant species interacting with each other under different rainfall and herbivory pressure scenarios. The functional traits of the two modeled plants were based on a prior field experiment in southeastern Spain, in which an unpalatable “nurse” species protected a palatable protégé’ species from herbivory. Moreover, the nurse species was more drought-resistant; that is, it had a lower wilting point, whereas the protégé species had a higher optimal growth rate. Firstly, we investigated the coexistence of the two plant species growing under a single limiting resource, focusing on the effect of intra-seasonal rainfall variability. We found that longer periods without rainfall within the wet season resulted in stable coexistence, whereas nearly constant rainfall led to competitive exclusion of the protégé by the nurse species. Secondly, we investigated how plant interactions varied along our studied gradients. Using the neighbor effect intensity and importance indices, we found that competitive effects increased with more constant rainfall. Moreover, higher herbivory rates resulted in increased facilitative effects of the nurse on the protégé species, but facilitative effects could only prevail over competitive effects under currently observed or higher intra-seasonal rainfall variability. This study highlights the relevance of intra-seasonal rainfall variability in explaining coexistence of species in dryland ecosystems and shows that increasing intra-seasonal rainfall variability or herbivory pressure can result in more facilitative effects from a nurse species. This information is crucial to obtain a better insight into the long-term coexistence of species, and the resulting stability of dryland ecosystems in response to future climate change

    Особливості правової моделі ханафітського мазгабу

    Get PDF
    Статья Исмагилова С.В. «Особенности правовой модели ханафитского мазхаба» исследует возникновение и развитие ханафитского мазхаба – правовой школы имама Абу Ханифы. В работе автор исследует источники фикха, феномен возникновения мазхабов и особенности правовой модели ханафитского мазхаба. В статье подчеркивается, что мазхаб ханафитов явился результатом научно-правовой деятельносты не только самого Абу Ханифы, но также и его учеников. Ключевые слова: ханафитский мазхаб, мусульманское право, иджтихад.The article by Ismagilov S.V. "Features of the jural model of the Hanafi school of thought" investigates the origin and development of the Hanafi school of thought - the juridical school of Imam Abu Hanifa. In this paper, the author analyses the sources of fiqh, the phenomenon of emergence of schools of thought and peculiarities of the juridical model of the Hanafi school of thought. The paper stresses that Madh'hab Hanafi is a product of scientific and jural activities not only of Abu Hanifa, but his disciples also. Key-words: juridical school of Abu Hanifa, Moslem jury, idgtikhad

    Гоголевские традиции в творчестве М. Булгакова

    Get PDF
    Model studies suggest that semiarid ecosystems with patterned vegetation can respond in a nonlinear way to climate change. This means that gradual changes can result in a rapid transition to a desertified state. Previous model studies focused on the response of patterned semiarid ecosystems to changes in mean annual rainfall. The intensity of rain events, however, is projected to change as well in the coming decades. In this paper, we study the effect of changes in rainfall intensity on the functioning of patterned semiarid ecosystems with a spatially explicit model that captures rainwater partitioning and runoff-runon processes with simple event-based process descriptions. Analytical and numerical analyses of the model revealed that rainfall intensity is a key parameter in explaining patterning of vegetation in semiarid ecosystems as low mean rainfall intensities do not allow for vegetation patterning to occur. Surprisingly, we found that, for a constant annual rainfall rate, both an increase and a decrease in mean rainfall intensity can trigger desertification. An increase negatively affects productivity as a greater fraction of the rainwater is lost as runoff. This can result in a shift to a bare desert state only if the mean rainfall intensity exceeds the infiltration capacity of bare soil. On the other hand, a decrease in mean rainfall intensity leads to an increased fraction of rainwater infiltrating in bare soils, remaining unavailable to plants. Our findings suggest that considering rainfall intensity as a variable may help in assessing the proximity to regime shifts in patterned semiarid ecosystems and that monitoring losses of resource through runoff and bare soil infiltration could be used to determine ecosystem resilience. Key Points Rainfall intensity controls patterning and the resilience of arid ecosystems Both an increase and decrease in rainfall intensity can trigger desertification In line with observations, three types of rain events were identified in our mode

    Local ecosystem feedbacks and critical transitions in the climate

    Get PDF
    Global and regional climate models, such as those used in IPCC assessments, are the best tools available for climate predictions. Such models typically account for large-scale land-atmosphere feedbacks. However, these models omit local vegetationenvironment 5 feedbacks that are crucial for critical transitions in ecosystems. Here, we reveal the hypothesis that, if the balance of feedbacks is positive at all scales, local vegetation-environment feedbacks may trigger a cascade of amplifying effects, propagating from local to large scale, possibly leading to critical transitions in the largescale climate. We call for linking local ecosystem feedbacks with large-scale land10 atmosphere feedbacks in global and regional climate models in order to yield climate predictions that we are more confident about

    Spatial heterogeneity and irreversible vegetation change in semi-arid grazing systems

    Get PDF
    Recent theoretical studies have shown that spatial redistribution of surface water may explain the occurrence of patterns of alternating vegetated and degraded patches in semiarid grasslands. These results implied, however, that spatial redistribution processes cannot explain the collapse of production on coarser scales observed in these systems. We present a spatially explicit vegetation model to investigate possible mechanisms explaining irreversible vegetation collapse on coarse spatial scales. The model results indicate that the dynamics of vegetation on coarse scales are determined by the interaction of two spatial feedback processes. Loss of plant cover in a certain area results in increased availability of water in remaining vegetated patches through run-on of surface water, promoting within-patch plant production. Hence, spatial redistribution of surface water creates negative feedback between reduced plant cover and increased plant growth in remaining vegetation. Reduced plant cover, however, results in focusing of herbivore grazing in the remaining vegetation. Hence, redistribution of herbivores creates positive feedback between reduced plant cover and increased losses due to grazing in remaining vegetated patches, leading to collapse of the entire vegetation. This may explain irreversible vegetation shifts in semiarid grasslands on coarse spatial scales
    corecore