268 research outputs found

    Crop management in rows.

    Get PDF
    Trial 87M71 Effect of row spacing and stubble retention on the yield of wheat. Location: Merredin Research Station. Treatments, site management and results from 1987, 1988 and 1989 have been described in previous experimental summaries. Four row spacings (9, 18, 27 and 36 cm) are compared in either burnt or stubble retained plots, on a red brown earth on the Merredin Research Station. There are six replicates laid out in a randomised block design. Trial 90ME32 Effect of row spacing and variety on the yield of wheat. Location: duplex site at Crooks (see 1989 Experimental Summary) This trial was carried out on the duplex soil site at Crooks (see 1989 Experimental Summary); in 1990, the wheat crop was sown after lupins, and aimed to look at the interaction between row spacing and variety of wheat. Varieties which differ in their canopy characteristics might be expected to differ in the rate at which they develop ground cover, and might therefore influence the partitioning of ET between soil evaporation and crop transpiration. The varieties Kuhn (low tillering, small leaf area) and Aroona (higher tillering, larger leaf area) were compared at row spacings of 9, 18 and 36 cm

    New Approach for Boat Motion Analysis in Rowing

    Get PDF
    In rowing, the study of the movement of the boat and of the rower in the boat is difficult. Indeed, the shell is quite narrow and fragile and it is impossible to use the classical apparatus for physiological and biomechanical analysis. For this reason, the physiological studies of rowers (cardiac and pulmonary parameters) have been more easily realised on specific and non specific ergometers (see Hagerman for an extensive review 1984): it is well known now, that rowers have exceptional aerobic possibilities and also use anaerobiosis for the start and the final part of the race (Hagerman 1984). In contrast, only a few publications deal with the movement of the boat and the rower. The velocity of the boat at different stroke rates (Martin and Bernfield 1980), the angular velocities of various articulations of the rowers (Nelson and Widule 1983) were studied by kinematic analysis. Though this technique is very useful, it does not catch the movements behind the subjects and is of no use to record physiological and mechanical parameters (Ishiko 1967). Some authors used DC recorder placed in a motor boat following the racing shell to record different parameters (Baird and Soroka 1952; Di Prampero 1971; Celentano 1974). But, this technique is not practical because of the need of a second operator to keep the cables out of the water. With the miniaturization, Ishiko proposed and used multichanneltelemetry to record the force of the rower and the acceleration of the boat (Ishiko 1967; Ishiko 1971). Schneider also used the same technique to record the force of the rower in the boat (Schneider 1978). Though this technique is excellent and powerful, it is also very expensive and quite sophisticated. Our goal was thus to take advantage of the miniaturization of the elements and to build and use a recorder and transducers that can be placed into the boat to record the acceleration of the boat and the propulsive force of the rower

    Direct demonstration of an HLA-DR allotypic determinant on the low molecular weight (beta) subunit using a mouse monoclonal antibody specific for DR3

    Get PDF
    A murine monoclonal antibody directed against a human B cell surface antigen with the characteristics of HLA-DR is described. The antigen detected is tightly linked to HLA and is correlated with the alloantigen HLA-Dw/DR3. Reactivity with a fraction of Dw/DRw6 cells is also observed. The determinant recognized by this antibody has been shown to be present on the smaller molecular weight β subunit of the HLA-DR antigen

    Flow around individual Taylor bubbles rising in stagnant CMC solutions: PIV measurements

    Get PDF
    The flow around single Taylor bubbles rising in non-Newtonian solutions of Carboxymethylcellulose (CMC) polymer was studiedusing a simultaneous technique employing particle image velocimetry (PIV) and shadowgraphy. This technique solved previousproblems on finding the correct position of the bubble interface. Solutions of different polymer weight percentage, varying from0.1 to 1.0 wt% were used to cover a wide range of flow regimes. The rheological fluid properties and pipe dimension yieldedReynolds numbers between 4 and 254 and Deborah numbers between 0.012 and 0.402. The shape of the bubbles in the differentfluids was compared. The flow around the nose of the bubbles was found to be similar in all the studied conditions. Velocityprofiles in the liquid film around the bubble were measured. Different wake structures were found in the different solutionsstudied. With increasing viscosity, the wake flow varied from turbulent to laminar, being possible to observe a negative wake forthe higher polymer concentration solutions. A comparison between the different wake structures was made

    Micro-Water harvesting and soil amendment increase grain yields of barley on a Heavy-Textured alkaline sodic soil in a rainfed Mediterranean environment

    Get PDF
    This paper focuses on the adverse effects of soil sodicity and alkalinity on the growth of barley (Hordeum vulgare L.) in a rainfed environment in south-western Australia. These conditions cause the accumulation of salt (called ‘transient salinity’) in the root zone, which decreases the solute potential of the soil solution, particularly at the end of the growing season as the soil dries. We hypothesized that two approaches could help overcome this stress: (a) improved micro-water harvesting at the soil surface, which would help maintain soil hydration, decreasing the salinity of the soil solution, and (b) soil amelioration using small amounts of gypsum, elemental sulfur or gypsum plus elemental sulfur, which would ensure greater salt leaching. In our experiments, improved micro-water harvesting was achieved using a tillage technique consisting of exaggerated mounds between furrows and the covering of these mounds with plastic sheeting. The combination of the mounds and the application of a low rate of gypsum in the furrow (50 kg ha−1) increased yields of barley grain by 70% in 2019 and by 57% in 2020, relative to a control treatment with conventional tillage, no plastic sheeting and no amendment. These increases in yield were related to changes in ion concentrations in the soil and to changes in apparent electrical conductivity measured with the EM3

    Simultaneous PIV and shadowgraphy measurements in slug flow in Newtonian and non-Newtonian liquids

    Get PDF
    A recent technique for performing simultaneous Particle Image Velocimetry and Shadography appliedfor the first time to slug flow, is presented in this work. The unsteadiness of slug flow creates the needof recording the shadow of the Taylor bubbles at the precise instant and position of the PIVmeasurements. Therefore, this experimental technique is used in order to characterise simultaneouslythe flow in the liquid and the shape of a single gas slug (Taylor bubble) rising through a verticalcolumn of stagnant liquid using only one CCD camera. The experimental facility and technique aredescribed and the details of the synchronisation between the two techniques are also explained. Thisnew method is based on the fact that the PIV particles and the shadow of the bubbles can illuminate theCCD camera sensor at different gray levels. The PIV images are obtained by seeding the flow withfluorescent seeding and placing an optical filter in front of the camera so that the intense laserreflections in the interface are avoided and only the PIV particles reach the CCD sensor. Theshadowgraph images are obtained by backward illumination with a board of LEDs emitting light in awavelength that passes through the optical filter. The processing of the images is explained. Thereason for keeping recording images with 8 bits is discussed. During the post-processing it is possibleto combine the shadowgraph results with the velocity field acquired with PIV, therefore, solving someof the basic processing errors, which appear at the interfaces. Some limitations of the technique itself,due to the highly 3D shape of the rear of the bubbles are also discussed. The flow around a gas slugrising through a vertical column filled with a non-Newtonian fluid is also presented. These are the firstquantitative measurements in slug flow for non-Newtonian flows, as long as the authors are awar

    Crop Updates - 2003 Oilseeds

    Get PDF
    This session covers fifteen papers from different authors ACKNOWLEDGMENTS VARIETIES Large scale canola varietal evaluation in WA, Peter Nelson, Oilseeds WA Performance of IT and TT canola varieties in the medium and high rainfall agzones of WA 2001-02, Graham Walton, Hasan Zaheer and Paul Carmody, Department of Agriculture QUALITY Reproductive biology, cotyledon development and oil accumulation in canola, J.A. Fortescue and D.W. Turner, School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia Plant and environmental factors affecting oil concentration in canola – a mini-review, D.W. Turner, School of Plant Biology, Faculty of Natural and Agricultural Sciences, The University of Western Australia Potential benefits from interspecific crosses between canola and ‘near canola’ quality Indian mustard, Janet Wroth, School of Plant Biology, The University of Western Australia (UWA), Wallace Cowling, School of Plant Biology, UWA and CBWA Pty Ltd, Anh-Van Pham, School of Mathematics and Statistics, UWA NUTRITION, AGRONOMY AND MACHINERY Timing of nitrogen application for producing canola grain and oil, R. F. Brennan, Department of Agriculture Managing canola for soil type and moisture stress, Paul Carmody and Hasan Zaheer Department of Agriculture Machinery lessons from 2002 – canola establishment, Glen Riethmuller, Greg Hamilton and Jo Hawksley, Department of Agriculture Machinery lessons from 2002 – harvesting short crops, Glen Riethmuller, Department of Agriculture Does increasing canola seeding rate reduce the competitiveness of grass weeds? Zaicou-Kunesch, C.M., Zaheer, S.H. and Eksteen, D, Department of Agriculture PESTS AND DISEASES Aphid damage to canola – not all cultivars are equal, Françoise A. Berlandier and Christiaan Valentine, Department of Agriculture Should we be worried about developing insecticide resistance in aphids? Owain Edwards, CSIRO Entomology Benefits provided by treating canola seed with imidacloprid seed dressing, Roger Jones, Brenda Coutts, Lisa Smith and Jenny Hawkes, Department of Agriculture, and Centre for Legumes in Mediterranean Agriculture Blackleg levels in canola in 2002, Ravjit Khangura1, Moin Salam1, Art J Diggle1 and Martin J Barbetti1,2 1Department of Agriculture, 2University of Western Australia DBM in canola, Kevin Walden, Department of Agricultur

    Crop Updates 2000 - Lupins

    Get PDF
    This session covers nineteen papers from different authors: 1.1999 Lupin Highlights, Bill O’Neill, LUPIN PRODUCTIVITY IMPROVEMENTS AND INDUSTRY DEVELOPMENT LUPIN ANTHRACNOSE 2. Anthracnose – 1999/2000, Geoff Thomas and Mark Sweetingham, Agriculture Western Australia LUPIN BREEDING AND AGRONOMY 3. The genetic control of mildly restricted branching in narrow-leafed lupin (Lupinus augustifolius L), Kedar Adhikari1,3, Nick Galwey1,3 and Miles Dracup2,3 1Plant Sciences, University of Western Australia 2Agriculture Western Australia 3Cooperative Research Centre for Legumes in Mediterranean Agriculture, University of Western Australia 4. Genotype x time of sowing interaction in lupins – Mingenew, Bob French, Agriculture Western Australia 5. Genotype x time of sowing interaction in lupins – Wongan Hills, Bob French, Agriculture Western Australia 6. Genetic variation in lupin tolerance to Brown Leaf Spot, Bob French, Agriculture Western Australia 7. Yellow lupin management in Western Australia, Bob French, Agriculture Western Australia APHIDS AND VIRUS CONTROL 8. Forecasting aphid and virus risk in lupins, Debbie Thackray, Jenny Hawkes and Roger Jones, Centre for Legumes in Mediterranean Agriculture and Agriculture Western Australia 9. When should lupin crops be sprayed for aphids to achieve maximum yield response? Françoise Berlandier, Agriculture Western Australia 10. Yield limiting potential of the new, non-necrotic strain of bean yellow mosaic virus in narrow-leafed lupin, Roger Jones, Yvonne Cheng and Lisa Smith, Crop Improvement Institute, Agriculture Western Australia, and Centre for Legumes in Mediterranean Agriculture LUPIN NUTRITION 11. Increasing the value of a rotation by applying lime, Chris Gazey and Michael O’Connell, Agriculture Western Australia HERBICIDE TOLERANCE AND WEED CONTROL 12. Herbicide damage does not mean lower yield in Lupins, Peter Carlton, Trials Coordinator, Elders Limited 13. Effect of herbicides Tordonä 75D and Lontrelä, used for eradication of Skeleton Weed, on production of Lupins in following seasons, John R. Peirce and Brad J. Rayner, Agriculture Western Australia 14. Herbicide tolerance of lupins, Terry Piper, Agriculture Western Australia 15. Tanjil lupins will tolerate metribuzin under the right conditions, Peter Newman, Agronomist Elders Limited and Cameron Weeks, Mingenew/Irwin Group LUPIN ESTABLISHMENT 16. A new seed pressing system for ryegrass suppression and healthy lupin establishment, Mohammad Amjad and Glen Riethmuller,Agriculture Western Australia 17. Banded surfactant for better lupin yield on non-wetting sand, Dr Paul Blackwell, Agriculture Western Australia DROUGHT TOLERANCE 18. Drought tolerance of lupin genotypes in Western Australia, Jairo A. Palta1,2,, Neil C. Turner1,2, Robert J. French2,3 ,1CSIRO Plant Industry, Centre for Mediterranean Agricultural Research, 2Centre for Legumes in Mediterranean Agriculture, University of Western Australia, 3Agriculture Western Australia, 19. Stem carbohydrate in lupins: a possible buffer to maintain seed growth under adverse conditions, Bob French1, Tim Setter2, Jairo Palta3 , 1Agriculture Western Australia, and CLIMA, 2Agriculture Western Australia, 3CSIRO, Floreat Park, and CLIM

    Crop Updates 2002 - Pulse Research and Industry Development in Western Australia

    Get PDF
    This session covers seventy one papers from different authors: 1. 2001 PULSE INDUSTRY HIGHLIGHTS CONTRIBUTORS BACKGROUND 2001 REGIONAL ROUNDUP 2. Northern Agricultural Region, M. Harries, Department of Agriculture 3. Central Agricultural Region, R. French and I. Pritchard, Department of Agriculture 4. Great Southern and Lakes, N. Brandon, N. Runciman and S. White, Department of Agriculture 5. Esperance Mallee, M. Seymour, Department of Agriculture PULSE PRODUCTION AGRONOMY AND GENETIC IMPROVEMENT 6. Faba bean, P. White, Department of Agriculture 7. Germplasm evaluation, P. White, M. Seymour and M. Harries, Department of Agriculture 8. Variety evaluation, P. White, M. Harries, N. Brandon and M. Seymour, Department of Agriculture 9. Sowing rate and time of sowing, P. White, N. Brandon, M. Seymour and M. Harries, Department of Agriculture 10.Use of granular inoculum in the Great Southern, N. Brandon1, J. Howieson2 and R. Yates2 1Department of Agriculture, 2Centre for Rhizobium Studies, Murdoch University 11.Tolerance to post emergent herbicides, M. Seymour and M. Harries, Department of Agriculture 12.Herbicide tolerance of new varieties, H. Dhammu and T. Piper, Department of Agriculture Desi chickpea 13. Breeding highlights, T. Khan, Department of Agriculture 14. Variety evaluation, T. Khan and K. Regan, Department of Agriculture 15. Effect of genotype and environment on seed quality, N. Suizu1 and D. Diepeveen2 1School of Public Health, Curtin University of Technology 2Department of Agriculture 16. Seed discolouration, C. Veitch and P. White, Department of Agriculture 17. Foliar application on N increases seed yield and seed protein under terminal drought, J. Palta1,2, A. Nandwal3 and N. Turner1,2 , 1CSIRO Plant Industry, 2CLIMA, the University of Western Australia, 3Department of Botany, Haryana Agric University, Hisar, India 18. Tolerance to chilling at flowering, H. Clarke, CLIMA, The University of Western Australia 19. Molecular studies of ascochyta blight disease in chickpea, G. Dwyer1, H. Loo1, T. Khan2, K. Siddique3, M. Bellgard1 and M. Jones1 ,1WA State Agricultural Biotechnology Centre and Centre for Bioinformatics and Biological Computing, Murdoch University, 2Department of Agriculture, 3CLIMA, The University of Western Australia 20. Effect of row spacing and sowing rate on seed yield, G. Riethmuller and B. MacLeod, Department of Agriculture 21. Herbicide tolerance on marginal soil types, H. Dhammu and T. Piper, Department of Agriculture 22. Kabuli chickpea, K. Regan, Department of Agriculture 23. Variety and germplasm evaluation, T. Khan and K. Regan, Department of Agriculture 24. Premium quality kabuli chickpea development in the ORIA, K. Siddique1, K. Regan2, R. Shackles2 and P. Smith2 , 1 CLIMA, The University of Western Australia, 2Department of Agriculture 25. Evaluation of ascochylta resistant germplasm from Syria and Turkey, K. Siddique1, C. Francis1 and K. Regan2, 1CLIMA, University of Western Australia 2Department of Agriculture Field pea 26. Breeding highlights, T. Khan Department of Agriculture 27. Variety evaluation, T. Khan Department of Agriculture 28. Comparing the phosphorus requirement of field pea and wheat, M. Bolland and P. White, Department of Agriculture 29. Tolerance of field pea to post emergent herbicides, M. Seymour and N. Brandon, Department of Agriculture 30. Response of new varieties to herbicides, H. Dhammu and T. Piper, Department of Agriculture 31. Lentil, K. Regan, Department of Agriculture 32. Variety evaluation, K. Regan, N. Brandon, M. Harries and M. Seymour, Department of Agriculture 33. Interstate evaluation of advanced breeding lines developed in WA, K. Regan1, K. Siddique2 and M. Materne3, 1Department of Agriculture, 2CLIMA, University of Western Australia, 3Victorian Institute for Dryland Agriculture, Agriculture Victoria 34. Evaluation of germplasm from overseas and local projects, K. Regan1, J. Clements2, K.H.M. Siddique2 and C. Francis21Department of Agriculture, 2CLIMA, University of Western Australia 35. Evaluation of breeding lines developed in WA, K. Regan1, J. Clements2, K.H.M. Siddique2 and C. Francis21Department of Agriculture, 2CLIMA, University of Western Australia 36. Productivity and yield stability in Australia and Nepal, C. Hanbury, K. Siddique and C. Francis, CLIMA, the University of Western Australia Vetch 37. Germplasm evaluation, M. Seymour1, R. Matic2 and M. Tate3, 1Department of Agriculture, 2South Australian Research and Development Institute, 3University of Adelaide, Waite Campus 38. Tolerance of common vetch to post emergent herbicides, M. Seymour and N. Brandon, Department of Agriculture Narbon bean 39. Removing narbon bean from wheat, M. Seymour, Department of Agriculture 40. Tolerance to low rates of Roundup and Sprayseed, M. Seymour, Department of Agriculture 41. Lathyrus development, C. Hanbury, CLIMA, the University of Western Australia 42. Poultry feeding trials, C. Hanbury1 and B. Hughes2 ,1CLIMA, the University of Western Australia,2Pig and Poultry Production Institute, South Australia Pulse Species 43. Species time of sowing, B. French, Department of Agriculture 44. High value pulses in the Great Southern, N. Brandon and N. Runciman, Department of Agriculture 45. Time of Harvest for improved seed yields of pulses, G. Riethmuller and B. French, Department of Agriculture 46. Phosphate acquisition efficiency of pulse crops, P. Rees, Plant Biology, Faculty of Natural and Agricultural Sciences UWA DEMONSTRATION OF PULSES IN THE FARMING SYSTEM 47. Howzat desi chickpea in the northern region, M. Harries, Department of Agriculture 48. Field pea harvest losses in the Great Southern and Esperance region, N. Brandon and M. Seymour, Department of Agriculture 49. Timing of crop topping in field pea, N. Brandon and G. Riethmuller, Department of Agriculture DISEASE AND PEST MANAGEMENT 50. Ascochyta blight of chickpea, B. MacLeod, M. Harries and N. Brandon, Department of Agriculture 51. Evaluation of Australian management packages, 52. Screening foliar fungicides 53. Row spacing and row spraying 54. Ascochyta management package for 2002, B. MacLeod, Department of Agriculture 55. Epidemiology of aschochyta and botrytis disease of pulses, J. Galloway and B. MacLeod, Department of Agriculture 56. Ascochyta blight of chickpea 57. Black spot of field pea 58. Ascochyta blight of faba bean 59. Ascochyta blight of lentil 60. Botrytis grey mould of chickpea 61. Black spot spread: Disease models are based in reality, J. Galloway, Department of Agriculture 62. Black spot spread: Scaling-up field data to simulate ‘Bakers farm’, M. Salam, J. Galloway, A. Diggle and B. MacLeod, Department of Agriculture 63. Pulse disease diagnostics, N. Burges and D. Wright, Department of Agriculture Viruses in pulses 64. Incidence of virus diseases in chickpea, J. Hawkes1, D. Thackray1 and R. Jones1,2, 1CLIMA, The University of Western Australia 2Department of Agriculture Insect pests 65. Risk assessment of aphid feeding damage on pulses, O. Edwards, J. Ridsdill-Smith, and R. Horbury, CSIRO Entomology 66. Optimum spray timing to control aphid feeding damage of faba bean, F. Berlandier, Department of Agriculture 67. Incorporation of pea weevil resistance into a field pea variety, O. Byrne1 and D. Hardie2, 1CLIMA, The University of Western Australia, 2Department of Agriculture 68. Screening wild chickpea species for resistance to Helicoverpa, T. Ridsdill-Smith1 and H. Sharma2,1CSIRO, Entomology, 2ICRISAT, Hyderabad 69. Field strategies to manage the evolution of pea weevil resistance in transgenic field pea, M. de Sousa Majer1, R. Roush2, D. Hardie3, R. Morton4 and T. Higgins4, 1Curtin University of Technology, 2Waite Campus, University of Adelaide, 3Department of Agriculture, 4CSIRO Plant Industry, Canberra 70. ACKNOWLEDGMENTS 71. Appendix 1: Summary of previous result
    • …
    corecore