66 research outputs found

    Registration of the OS9XQ36 Mapping Population of Wheat (Triticum aestivum L.)

    Get PDF
    The OS9XQ36 wheat (Triticum aestivum L.) mapping population (Reg. No. MP-2, NSL 465170) is a set of 164 F6–derived recombinant inbred lines (USDA–ARS Germplasm Resources Information Network [GRIN] accession no. GSTR 11903 through GSTR 12066) from the cross between OS9A (PI 658243), a single plant selection from the cultivar Stephens (CI 17596), and QCB36 (PI 658244), a single plant selection from the elite breeding line OR9900553. This population was developed to investigate the consistently lower grain hardness and superior end-use quality of OR9900553 compared with Stephens. This population has also been genotyped with diversity array technology (DArT) and simple sequence repeat (SSR) markers resulting in the construction of a 270-marker linkage map covering 1785 cM at a density of one marker per 7 cM. This F6–derived population is one of 20 mapping populations being used by the WheatCAP consortium (http://maswheat.ucdavis.edu/) for extensive quantitative trait locus analysis and forms part of a publicly available long-term genetic resource to map complex traits in wheat

    Evolving Molecular Marker Technologies in Plants: From RFLPs to GBS

    Get PDF
    Molecular markers have proven to be useful tools for genetics and molecular breeding of crop plants, starting with low-throughput RFLPs (restriction fragment length polymorphisms) in 1980 and culminating in ultra high-throughput SNPs at present. Molecular marker technology has continuously evolved from hybridization-based RFLPs to PCR-based RAPDs, AFLPs, and SSRs, and finally high-throughput SNPs. More recently, ultra high-throughput genotyping by sequencing (GBS) has been established. Among these molecular markers, SSRs were considered the markers of choice for several plant breeding applications because of their various desirable attributes, and are still considered inexpensive for simply inherited traits. However, more recently, SNP markers have become markers of choice due to their abundance, uniform distribution throughout genomes and high resolution as well as their amenability to high-throughput approaches. With the advent of next-generation sequencing (NGS) technologies, new sequencing tools have been found to be valuable for the discovery, validation, and application of genetic markers. These ultra high-throughput markers will not only prove useful for preparation of high-density genetic maps and identification of QTLs for their deployment in plant breeding but will also facilitate genome-wide selection (GWS) and genome-wide association studies (GWAS)

    Creation of a multiple-use recombinant inbred line population for the development of molecular markers in soft white winter wheat

    Get PDF
    Tese de doutoramento em Física (Pré-Bolonha), especialidade de Física Experimental, apresentada à Faculdade de Ciências e Tecnologia da Universidade de CoimbraPositron emission tomography based on resistive plate chambers (RPC-PET) has been proposed for both preclinical and clinical applications. We firstly present imaging results of needle-like and planar 22Na sources obtained with a prototype of a high-acceptance small-animal RPC-PET. The two detector modules utilized in this experiment had an effective front face of 6.4 x 6.4 cm^2 and consisted of 5 gas gaps and 6 glass electrodes with a total thickness of 5 mm. The data included lines of response (LORs) inclined up to 58º, and the depth of interaction (DOI) was accurately measured, demonstrating the parallax-free property inherent to RPC-PET. The maximum likelihood expectation-maximization (MLEM) reconstruction of the acquired data yielded an excellent and stable resolution of 0.4 mm full width at half maximum (FWHM). Concurrently, we pursued studies of a suggested whole-body single-bed RPC-PET. It has been shown by simulation that RPC-PET with an axial field-of-view (AFOV) of 2.4 m is feasible and yields an absolute sensitivity at least one order of magnitude superior to that of typical crystal-based PET scanners. In addition, RPC-PET offers an important time-of-flight (TOF) advantage and provides a potentially very-high spatial resolution at the detector level. In the second part of this work, a fully three-dimensional reconstruction algorithm capable of processing the very inclined LORs from large AFOV systems such as RPC-PET is demonstrated. It relies on the application of a TOF-based-kernel into the MLEM algorithm. With the 300 ps FWHM time resolution, already experimentally demonstrated, a rejection of 63% of the body-scattered events is obtained. We present reconstructed results from blind simulations corresponding to the anthropomorphic phantom, NCAT, with oncological lesions introduced into different locations within the human body. A comparison between 300 and 600 ps FWHM TOF reconstructed images is performed, with an increasing detectability being observed for a better TOF resolution. We finally compare issues related to image convergence speed. An alternative new approach, which consists in dividing the full-body data into nine different image regions that are reconstructed independently with graphical processing unit (GPU) assistance, provides a six times faster reconstruction compared with a GPU-based whole-body reconstruction. For a 300 ps FWHM RPC-PET scanner, this allows reaching a reconstructed image, that results from 1.6 x 10^10 annihilations within 7 minutes and upon injection of 2 mCi, just 4 minutes after the end of data acquisition. We conclude that RPC-PET is well oriented to compete with other commercial PET scanners in the global market.A tomografia por emissão de positrões baseada em detectores do tipo câmaras de placas resistivas (RPC-PET) foi proposta para aplicação em ensaios com pequenos animais e na prática clínica. Neste trabalho, apresentamos primeiramente resultados experimentais obtidos a partir de um protótipo RPC-PET de alta aceitação para pequenos animais. Foram obtidas imagens de fontes do radioisótopo 22Na, uma quase pontual e outra planar. Usámos dois módulos de detectores RPC com uma área activa de 6.4 x 6.4 cm^2 e uma espessura de 5 mm, constituída por 6 vidros empilhados e 5 espaços gasosos definidos entre eles. Os dados adquiridos incluíram linhas de coincidência (LORs) inclinadas até um ângulo de 58º, tornando essencial a medida precisa da profundidade de interacção. A identificação dos espaços gasosos onde ocorreram as avalanches permitiu demonstrar a ausência de erro de paralaxe nas medidas realizadas com o RPC-PET para pequenos animais. A partir da reconstrução dos dados processados com o algoritmo maximum likelihood expectation-maximization (MLEM), obtivemos uma resolução espacial com largura a meia altura (FWHM) de 0.4 mm, excelente e estável. Em paralelo, continuámos a estudar as potencialidades de um protótipo RPC-PET de corpo inteiro e cama única, orientado para pessoas. Já foi anteriormente demonstrado por simulação que um scanner RPC-PET com 2.4 m de campo de visão axial (AFOV) é viável e permitirá o aumento de sensibilidade de pelo menos uma ordem de grandeza em relação aos scanners PET com cristais. Duas outras virtudes do RPC-PET são a sua capacidade de medição do tempo de voo (TOF) dos fotões e a elevada resolução espacial ao nível do detector. Na segunda parte deste trabalho apresentamos um algoritmo de reconstrução, totalmente tridimensional, capaz de processar LORs muito inclinadas em sistemas com um AFOV longo, como é o caso do RPC-PET. Este algoritmo acrescenta um kernel ao algoritmo MLEM, baseado na informação de TOF. Com uma resolução temporal de 300 ps FWHM, já experimentalmente comprovada, é possível rejeitar 63% dos eventos dispersados no corpo humano. Exibimos imagens reconstruídas obtidas a partir de simulações do fantoma antropomórfico, NCAT, com lesões oncológicas situadas em diferentes locais do corpo humano. A comparação entre imagens conseguidas com resoluções temporais de 300 ps e 600 ps FWHM, permite observar uma detectabilidade acrescida associada à melhor resolução de TOF. Por último, são estudados os tempos de convergência da reconstrução. Um método inovador e alternativo, que consiste na divisão dos dados do corpo humano em nove regiões e na reconstrução independente desses dados com recurso a unidades de processamento gráfico (GPUs), permite uma reconstrução seis vezes mais rápida do que a reconstrução de corpo inteiro também com o auxílio de GPUs. A partir de dados de 1.6 x 10^10 aniquilações ocorridas durante uma aquisição de 7 minutos e para uma actividade injectada de 2 mCi, um scanner RPC-PET com uma resolução temporal de 300 ps FWHM permitirá obter uma imagem reconstruída apenas 4 minutos após o fim da aquisição. Podemos assim concluir que o RPC-PET está bem colocado para competir no mercado dos scanners PET comerciais

    Single Nucleotide Polymorphism Genotyping for Breeding and Genetics Applications in Chickpea and Pigeonpea using the BeadXpress Platform

    Get PDF
    Single nucleotide polymorphisms (SNPs) are ideal molecular markers due to their higher abundance. Although several types of genotyping platforms for assaying large number of SNPs are available, in cases such as marker-assisted selection, where few markers are required for genotyping a set of potential lines, high-throughput SNP genotyping platforms (e.g., iScan or Infinium) may not be cost effective. In this scenario, GoldenGate assays based on VeraCode technology using Illumina BeadXpress seems to be the most cost-effective platform. The objective of this study was to develop cost-effective SNP genotyping platforms in chickpea (Cicer arietinum L.) and pigeonpea (Cajanus cajan L.). Two sets of SNPs, one each for chickpea (96 SNPs) and pigeonpea (48 SNPs), were developed and tested by genotyping 288 diverse genotypes from respective reference sets. The SNPs selected for the oligo pool assays had high transferability to crop wild relative species. The mean polymorphism information content value of assayed SNP markers was 0.31 and 0.32 in chickpea and pigeonpea, respectively. No unique pattern was observed in the chickpea reference set whereas two major groups were observed in the case of the pigeonpea reference set. The Illumina BeadXpress platform assays developed for chickpea and pigeonpea are highly informative and cost effective for undertaking genetic studies in these legume species

    Development of a Set of Chromosome Segment Substitution Lines in Pearl Millet [Pennisetum glaucum (L.) R. Br.]

    Get PDF
    The detection of minor quantitative trait loci (QTL) with conventional mapping populations can be complicated by the overshadowing effect of major QTL as well as by interactions between QTL. To overcome these constraints, we developed a set of chromosome segment substitution lines (CSSLs) by introgression of overlapping chromosome segments from 863B into ICMB 841 background for use in QTL detection, fine mapping, and trait mechanism studies, especially for complex traits. Since each CSSL carries one or a few donor segments in the genetic background of the recurrent genotype, the QTL interaction is confined to genes present on small homozygous substituted segments. Advanced generation backcross progenies (1492), expected to provide coverage across the mapped length of each of the seven pearl millet linkage groups (LGs), were genotyped at 74 marker loci [(48 simple sequence repeats (SSRs), 21 single strand conformation polymorphism-single nucleotide polymorphism (SSCP-SNP), and 5 sequence tagged sites (STSs)] identifying 124 segment introgression homozygotes (13 for LG1, 9 for LG2, 10 for LG3, 41 for LG4, 23 for LG5, 11 for LG6, and 17 for LG7). These CSSLs consisted of 1–3 homozygous introgression segments substituted from 863B in the genetic background of the recurrent parent ICMB 841 and among them, 54 represent unique lines with the donor chromosome segment averaging 100.69 cM. These CSSLs developed here provide a nearly ideal set of genetic stocks for mapping and fine mapping the multitude of traits for which their parents differ

    High-resolution radiation hybrid mapping in wheat: an essential tool for the construction of the wheat physical maps

    Get PDF
    ArtigoO poema épico da época moderna nasce na literatura portuguesa como oceânico logo a partir da sua gestação. Este estudo enquadra a sua génese num contexto europeu.Università di Roma, La Sapienz

    Integrated physical, genetic and genome map of chickpea (Cicer arietinum L.)

    Get PDF
    Physical map of chickpea was developed for the reference chickpea genotype (ICC 4958) using bacterial artificial chromosome (BAC) libraries targeting 71,094 clones (~12× coverage). High information content fingerprinting (HICF) of these clones gave high-quality fingerprinting data for 67,483 clones, and 1,174 contigs comprising 46,112 clones and 3,256 singletons were defined. In brief, 574 Mb genome size was assembled in 1,174 contigs with an average of 0.49 Mb per contig and 3,256 singletons represent 407 Mb genome. The physical map was linked with two genetic maps with the help of 245 BAC-end sequence (BES)-derived simple sequence repeat (SSR) markers. This allowed locating some of the BACs in the vicinity of some important quantitative trait loci (QTLs) for drought tolerance and reistance to Fusarium wilt and Ascochyta blight. In addition, fingerprinted contig (FPC) assembly was also integrated with the draft genome sequence of chickpea. As a result, ~965 BACs including 163 minimum tilling path (MTP) clones could be mapped on eight pseudo-molecules of chickpea forming 491 hypothetical contigs representing 54,013,992 bp (~54 Mb) of the draft genome. Comprehensive analysis of markers in abiotic and biotic stress tolerance QTL regions led to identification of 654, 306 and 23 genes in drought tolerance “QTL-hotspot” region, Ascochyta blight resistance QTL region and Fusarium wilt resistance QTL region, respectively. Integrated physical, genetic and genome map should provide a foundation for cloning and isolation of QTLs/genes for molecular dissection of traits as well as markers for molecular breeding for chickpea improvement

    Population genomic and genome-wide association studies of agroclimatic traits in sorghum

    Get PDF
    Accelerating crop improvement in sorghum, a staple food for people in semiarid regions across the developing world, is key to ensuring global food security in the context of climate change. To facilitate gene discovery and molecular breeding in sorghum, we have characterized ∼265,000 single nucleotide polymorphisms (SNPs) in 971 worldwide accessions that have adapted to diverse agroclimatic conditions. Using this genome-wide SNPmap,we have characterized population structure with respect to geographic origin and morphological type and identified patterns of ancient crop diffusion to diverse agroclimatic regions across Africa and Asia. To better understand the genomic patterns of diversification in sorghum, we quantified variation in nucleotide diversity, linkage disequilibrium, and recombination rates across the genome. Analyzing nucleotide diversity in landraces, we find evidence of selective sweeps around starch metabolism genes, whereas in landrace-derived introgression lines, we find introgressions around known height and maturity loci. To identify additional loci underlying variation in major agroclimatic traits, we performed genome-wide association studies (GWAS) on plant height components and inflorescence architecture. GWAS maps several classical loci for plant height, candidate genes for inflorescence architecture. Finally, we trace the independent spread of multiple haplotypes carrying alleles for short stature or long inflorescence branches. This genome-wide map of SNP variation in sorghum provides a basis for crop improvement through marker-assisted breeding and genomic selection
    corecore