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Abstract 

Molecular markers have proven to be useful tools for genetics and molecular breeding of crop 

plants, starting with low-throughput RFLPs (restriction fragment length polymorphisms) in 

1980 and culminating in ultra high-throughput SNPs at present. Molecular marker technology 

has continuously evolved from hybridization-based RFLPs to PCR-based RAPDs, AFLPs, 

and SSRs, and finally high-throughput SNPs. More recently, ultra high-throughput 

genotyping by sequencing (GBS) has been established. Among these molecular markers, 

SSRs were considered the markers of choice for several plant breeding applications because 

of their various desirable attributes, and are still considered inexpensive for simply inherited 

traits. However, more recently, SNP markers have become markers of choice due to their 

abundance, uniform distribution throughout genomes and high resolution as well as their 

amenability to high-throughput approaches. With the advent of next-generation sequencing 

(NGS) technologies, new sequencing tools have been found to be valuable for the discovery, 

validation, and application of genetic markers. These ultra high-throughput markers will not 

only prove useful for preparation of high-density genetic maps and identification of QTLs for 

their deployment in plant breeding but will also facilitate genome-wide selection (GWS) and 

genome-wide association studies (GWAS). 
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Introduction 

Analysis of DNA-sequence variation (or allelic state) at a specific chromosomal location in 

an individual/genotype is referred to as genotyping. Variation in the DNA sequence may or 

may not have functional significance. For example, variation may result either in a 

synonymous or non-synonymous change in a codon. Such alterations may either cause a 

favorable change or deleterious mutations (mis-sense or non-sense) in an organism. Genetic 

variation may be small changes in frame (point-mutations, substitutions) or frame-shifts 

(insertions or deletions) (Jones et al. 2009). Nevertheless, these variations have been used as 

molecular markers to understand genome architecture as well as for plant breeding 

applications. Marker genotyping has various applications including parent genotype 

selection, screening mapping populations, genome mapping, trait mapping, germplasm 

diversity assessment, marker-assisted selection, linkage drag elimination in backcrossing and 

identification of genomic re-arrangements across taxa (Jain et al. 2002). 

Variation in germplasm collections has been harnessed at both the morphological as well as 

molecular level. When morphological traits, including plant height, tillering, photoperiod, 

seed type, texture, leaf shape, and flower colour, have been used for assessing and utilizing 

genetic variation, they are referred to as „morphological markers‟ (Tanksley 1983, Emami 

and Sharma 1999). As morphological markers are normally limited in number, the genetics 

and breeding community found a need to use enzymes and DNA polymorphisms as markers, 

which are referred to as biochemical and DNA-based „molecular markers‟, respectively. 

Although biochemical markers are also molecular markers, the term is mostly used to refer to 

DNA-based polymorphisms. Molecular markers can provide genomic information for plant 

evaluation before entering the next cycle of selection which is critical for success in plant 

breeding (Bagge and Lübberstedt, 2008) and also help track polymorphisms with no obvious 

phenotype.  
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Due to advances in automation coupled with the demand of increasing throughput in a cost-

effective manner, molecular marker technology has evolved during the last three decades. 

Based on their degree of multiplexing capacity /throughput, i.e., number of genetic loci per 

experiment, available molecular markers can be classified into the following categories: (i) 

low-throughput (100s of loci on 100s of lines), (ii) medium-throughput (from 100s up to 

1000s of loci on 1000s of lines, (iii) high-throughput (1000s of loci on 1000s of lines), and 

(iv) ultra-high throughput marker systems (from 1000s loci up to 50,000 loci on 1000s of 

lines) (Figure 1). This article provides a brief overview of the different molecular markers in 

these categories with a major emphasis on emerging genotyping technologies including 

genotyping-by-sequencing (GBS). It is anticipated that new marker technologies/genotyping 

platforms will facilitate development of functional molecular markers (Table 1, Figure 1). 

Low-throughput marker systems 

Restriction fragment length polymorphisms (RFLPs) 

RFLPs initialized the era of DNA marker technology during the 1980s in plant genetic 

studies and are, therefore, referred to as „First generation molecular markers‟ (Jones et al. 

2009). The polymorphisms detected by RFLPs are due to changes in nucleotide sequences in 

recognition sites of restriction enzymes or due to insertions or deletions of several nucleotides 

leading to detectable shift in fragment size (Tanksley et al. 1989). RFLPs have several 

advantages including high reproducibility, a co-dominant nature, no need of prior sequence 

information, and high locus-specificity. By using RFLP markers, genetic maps have been 

developed in several crop species including rice (McCouch et al. 1988), maize (Helentjaris 

1987), wheat (Chao et al. 1989), soybean (Keim et al. 1990), tomato and potato (Tanksley et 

al. 1992), barley (Graner et al. 1991), and chickpea (Simon and Muehlbauer 1997). Although 

these markers have also been used for trait mapping (see Varshney et al. 2005, Gupta et al. 
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2010), they have not been found to be very useful for plant breeding applications. This can be 

attributed to the tedious and time consuming procedure involving their use as well as a 

general inability to automate the procedure.  

Medium-throughput marker systems 

The revolutionary advent of PCR during the 1980s stimulated development of different 

molecular marker types. A brief overview over some of these markers is provided below. 

Random amplified polymorphic DNA (RAPDs) 

RAPDs are probably the first PCR based genetic markers that were easy to use and 

inexpensive (Williams et al. 1990). RAPD markers are easy-to-use and less expensive as no 

prior sequence information is required. They are used as universal markers for species with 

little or no genomic resources available. RAPD markers have been extensively used in 

different plant species for fingerprinting, assessment of genetic variation in populations and 

species, study of phylogenetic relationships among species/subspecies and cultivars, and for 

many other purposes including gene tagging (see Gupta et al. 1999). However, RAPD 

markers are dominant that cannot distinguish between homozygous and heterozygous 

individuals. Furthermore, due to their random nature of amplification and short primer length, 

they are not a preferred choice for genome mapping. In addition, these markers do not exhibit 

reliable amplification patterns, are not reproducible, and vary with the experimental 

conditions (Huen and Helentjaris 1993, Ellsworth et al. 1993). 

 

 

 

Simple sequence repeats (SSRs) 
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Simple sequence repeats (SSRs) or microsatellites were developed during 1990s and 

provided a choice for various studies since they are amenable to low, medium and high-

throughput approaches. SSRs are easily assayable by gel electrophoresis for few to hundreds 

of samples, which could be affordable by laboratories with limited resources. SSRs are often 

derived from non-coding/anonymous genomic regions, such as genomic survey sequences 

(GSSs) and bacterial artificial chromosomes (BACs). As a result, development of SSR 

markers used to be expensive and laborious.  In recent years, however, due to the availability 

of large-scale gene/EST (expressed sequence tag) sequence information for various plant 

species, SSR markers can easily be developed in silico. Such markers have been referred to 

as genic SSR markers and have been developed in a very cost-effective manner (Varshney et 

al. 2005). The high degree of polymorphism as compared to RFLPs and RAPDs, their locus 

specific and co-dominant nature, make them the markers of choice for a variety of purposes 

including practical plant breeding (Gupta and Varshney 2000). SSR markers dominated 

genetics research and breeding applications, especially in plants for more than a decade. SSR 

markers are probably the only class of markers that have been used for almost all aspects of 

genetics research and breeding in a wide range of plant species (Gupta and Varshney 2000, 

Varshney et al. 2005). 

 

Amplified fragment length polymorphism (AFLPs) 

Amplified fragment length polymorphism is a multi-locus marker technique that combines 

the techniques of restriction digestion and selective PCR amplification of restriction 

fragments and can be applied to DNA of any origin or complexity (Vos et al. 1995). The use 

of AFLP markers is cost-effective, since it needs moderate amounts of DNA, and a single 

assay allows simultaneous detection of a large number of co-amplified restriction fragments. 

Moreover, AFLPs are considered to be a robust and reliable genotyping technique, as 
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stringent primer annealing conditions are used. The high frequency of identifiable AFLP 

bands coupled with a high reproducibility makes this technology an attractive tool for 

fingerprinting, constructing genetic maps and saturating genetic regions with low marker 

density (Gupta et al. 1999). In addition, the property of reliable inheritance and transferability 

of these markers have encouraged their application in genetic diversity analyses in several 

crop species like rice (Mackill et al. 1996, Zhu et al. 1998, Maheshwaran et al. 1997), wheat 

(Huang et al. 2000, Xu and Ban 2004, Barrett et al. 1998, Shan et al. 1999, Soleimani et al. 

2002), barley (Faccioli et al. 1999, Shan et al. 1999), and also in legume species like soybean 

(Maughan et al. 1996, Young et al. 1999) and chickpea (Winter et al. 2000, Nguyen et al. 

2003). While AFLPs have also been used for trait mapping in several instances, the 

conversion of associated AFLP markers into a locus-specific and user-friendly marker such 

as a sequence tagged site (STS) or sequence characterized amplified region (SCAR) has not 

always been straightforward. Therefore, use of AFLP markers has not been common for 

molecular breeding applications (Xu and Ban 2004). 

 

High-throughput marker systems 

Molecular breeding in general involves screening of large segregating populations with 

molecular markers. Therefore, screening of markers in a high-throughput manner can offer 

cost-effective marker genotyping and enhance adoption of molecular markers in plant 

breeding applications. In this context, genotyping of SSR markers in a high-throughput 

manner has been adopted by using ABI capillary sequencing electrophoresis and the 

Multiplex-Ready
TM

 marker technology (MRT) (Appleby et al. 2009). Despite of those high-

throughput SSR platforms, , costs are still prohibitive for many breeding programs.   
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Single nucleotide polymorphisms (SNPs) 

Single nucleotide polymorphisms (SNPs) are the most abundant sequence variation in nature 

(frequency varies with each organism/species) (Rafalski 2002). SNPs are mostly bi-allelic 

and arise either due to substitutions/point mutations (transition and transversion) or due to 

insertion/deletion of nucleotides and are detectable when similar genomic regions from 

different genotypes of same or different species are aligned. Their occurrence in coding 

sequence may be linked to phenotypic changes in an organism. SNPs are not only efficient in 

terms of reliability, reproducibility and transferability, but are also amenable to automation 

and high-throughput approaches.  

Although initially development of SNP markers was considered expensive as it mainly 

involved allele-specific sequencing, the advent of NGS or second generation sequencing 

technologies (454/FLX, Solexa/Illumina, SOLiD/ABI) has brought sequencing cost down 

(Thudi et al. 2012). Very recently, the third (or future) generation sequencing technologies 

such as single molecule sequencing (PacBio/Pacific Biosciences (USA), 

HeliScope/HelicosBiosceinces (USA), and Polonator (Dover/Harvard, USA) started to 

emerge (Thudi et al. 2012). These third generation sequencing technologies are expected to 

further reduce sequencing costs drastically to levels below $1 per mega base compared to 

$60, $2, and $1 estimated costs  for sequences generated by 454/FLX, SOLiD/ABI, and 

Solexa/Illumina, respectively. All these sequencing technologies are being used for whole 

genome de novo and re-sequencing studies 

(synteny.cnr.berkeley.edu/wiki/index.php/Sequenced_plant_genomes), reduced 

representation sequencing (Hyten et al. 2010a, Davey et al. 2011), targeted genomic 

sequencing (Delmas et al. 2011, Griffin et al. 2011), paired-end sequencing (Rounsley et al. 

2009), meta-genomic sequencing (Ottesen et al. 2011), transcriptome sequencing (Cheung et 

al. 2006, Hiremath et al. 2011), small RNA sequencing (Gonzalez-Ibeas et al. 2011, Zhou et 

file:///C:/Users/Orieralizarazu/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/F5F5UDUQ/Genotyping_for_sequencing_290811.docx
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al. 2009), and chromatin immune-precipitation sequencing (ChIP) (Shendure et al. 2008, 

Varshney et al. 2009). As a result, it has become easier and very-cost effective to quickly 

identify a large number of SNPs in short time in any plant species.  

For genotyping SNP markers in low to medium-throughput approaches, more than 30 assays 

are currently available that can be classified into four reaction principles or chemistries: 

hybridization with allele-specific oligonucleotide probes, oligonucleotide ligation, single 

nucleotide primer extension, and enzymatic cleavage (Gupta et al. 2001, Syvanen 2005, 

Kwok 2001, Steemers et al. 2006). However, very recently additional SNP genotyping 

platforms from the company Illumina have been developed and discussed below in detail.  

GoldenGate assays 

Illumina‟s GoldenGate assay provides SNP genotyping for genome-wide marker profiling. 

Thus, one can select any number of SNPs (for each of the samples to be genotyped) and the 

throughput level best suited for a study. GoldenGate assays may be developed for any crop 

species using either BeadArray, or Veracode technology (Thomson et al. 2011). On the basis 

of level of multiplexing and through-put, GoldenGate assays can be classified into: (i) 

GoldenGate BeadArray allowing simultaneous genotyping of 96-, 192-, 384, 768-, 1536- and 

3,072 SNP loci in a fairly large collection of samples, (ii) GoldenGate Veracode 

(BeadXpress) allowing genotyping of 48-, 96-, 192-, and 384-plexes, and (iii) GoldenGate 

Indexing allowing genotyping of 96 to 384 SNPs simultaneously. Among these GoldenGate 

Indexing screen up to 16 times more samples per reaction than one can do with the standard 

GoldenGate assay thereby decreasing costs of the genotyping assay. These assays are used 

for a variety of applications such as association mapping, linkage mapping, and diversity 

analyses in crops like rice (see McCouch et al. 2010, Thomson et al. 2011), wheat (Akhunov 

et al. 2009, Chao et al. 2010), barley (Rostoks et al. 2006, Close et al. 2009, Druka et al. 
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2011), maize (Yan et al. 2010, Mammadov et al. 2011), soybean (Hyten et al. 2008, Hyten et 

al. 2009), common bean (Hyten et al. 2010b), pea (Deulvot et al. 2010), and cowpea 

(Muchero et al. 2009). 

Competitive Allele-Specific PCR (KASPar) Assays 

Above mentioned GoldenGate (GG) assays by Illumina seem are superior for genotyping a a 

large number of SNPs/sample for several samples. This makes KASPar a simple, cost-

effective and flexible genotyping system, since the assays can be adjusted with a range of 

DNA samples. However some molecular breeding applications such as marker-assisted 

selection (MAS) or marker-assisted backcrossing (MABC) employ genotyping of large 

number of lines with only few SNPs. In such cases, new genotyping assays that involve 

competitive allele-specific PCR for a given SNP, followed by SNP detection via 

Fluorescence Resonance Energy Transfer (FRET) have been developed (Chen et al. 2010). 

These assays for the target SNPs are being developed and used for genotyping commercially 

by Kbioscience UK (http://www.kbioscience.co.uk/) and are referred as KBioScience Allele-

Specific Polymorphism (KASP) or KASPar assays. One of the advantages of using KASPar 

assays is that there is no need of sequencing to identify SNPs for assay development, instead 

SNP flanking sequences already known while developing different types of genotyping 

assays (e.g., Illumina) can readily be used for primer design (one common and two allele-

specific primers) for KASPar assays (for review see McCouch et al. 2010). Although 

KASPar genotyping assays have come to the market very recently, they have started to be 

used for genetic diversity studies (Maughan et al. 2011, Cortes et al. 2011) and genetic 

mapping (Allen et al. 2011).  

 

Diversity array technology (DArT) 
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Diversity array technology (DArT) is a high-throughput microarray hybridization based assay 

involving genotyping of several hundred polymorphic loci simultaneously spread over the 

genome without prior sequence information (Jaccoud et al. 2001). DArT markers are bi-

allelic and behave mostly in a dominant (presence vs absence) or sometimes in a co-dominant 

(2 doses vs 1 dose vs absent) manner. These markers usually detect polymorphisms due to 

single base-pair changes (SNPs) within restriction sites recognized by endonucleases, or due 

to insertion/deletion (InDels) or rearrangements (Jaccoud et al. 2001). The technique is 

reproducible and cost-effective, and has become available for >70 species of both plants and 

animals (http://www.diversityarrays.com/genotypingserv.html). In plants, DArTs have been 

already developed in all major crop species including rice (Jaccoud et al. 2001), wheat 

(Akbari et al. 2006, Semagn et al. 2006, White et al. 2008, Peleg et al. 2008, Jing et al. 2009), 

sorghum (Mace et al. 2008, Mace et al. 2009), rye (Bolibok-Brągoszewska et al. 2009), oat 

(Newell et al. 2011), triticale (Badea  et al. 2011) and more than 30 other plant species (Jing 

et al. 2009). It is important to note that for wheat alone more than 50,000 samples (>95% as 

service at ~1 cent per marker assay), >350 mapping populations have been processed, which 

resulted in preparation of >100 genetic maps with ~7,000 markers assigned to chromosomes 

(A. Kilian, personal communication). DArT markers have been extensively used for diversity 

studies, genetic mapping, bulked segregant analysis (BSA), QTL interval mapping, and 

association mapping. 

 

Ultra high-throughput marker systems 

Some modern genetics and breeding approaches like genome-wide association studies 

(GWAS) and genome-wide selection (GWS) or genomic selection (GS) require genotyping 

http://www.diversityarrays.com/genotypingserv.html
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of large populations with a large number of markers. Such studies require ultra-high 

throughput marker systems (Figure 1, Figure 2).  

 

Infinium assay for whole-genome genotyping 

Illumina‟s Infinium assay based on BeadChip
TM

 technology is a high-density SNP 

genotyping technology for whole-genome genotyping allowing for genotyping of hundreds of 

thousands of SNPs simultaneously. One of the advantages of this system is that it allows 

simultaneous measurement of both signal intensity as well as changes in allelic composition 

(Gupta et al. 2008, Varshney 2010). This assay involves the use of 12-, 24-, 48-, or 96-

sectioned BeadChips simultaneously, where each section of a BeadChip contains 1.1 million 

beads carrying oligo-nucleotides with known functions (Syvanen 2005, Gunderson et al. 

2005, Steemers and Gunderson 2007). The challenge for the development of infinium assays 

in plants was the availability of a sufficient number of SNPs. This problem has been solved 

with the advent of NGS technologies, which allowed discovery of sufficient high density 

SNPs for infinium assays. Infinium assays have already been developed and used in crop 

plants. For instance in soybean, the Illumina Infinium iSelect SoySNP50 chip containing 

44,299 informative SNPs was used to resolve the issue of origin of genomic heterogeneity in 

William 82 cultivars (Haun et al. 2011). In maize, a 50K SNP Infinium chip containing SNPs 

in approximately two-thirds of all maize genes providing an average marker density of ~1 

marker every 40 kb was developed (Ganal et al. 2012). Infinium genotyping assays have been 

developed in tree species like loblolly pine to study population structure and environmental 

associations to aridity (Eckert et al. 2010). The commercially availability of these high 

density SNP platforms will undoubtedly facilitate the application of SNP markers in 

molecular plant breeding (Mammadov et al. 2011). 
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Genotyping-by-sequencing (GBS) 

Recent advances in NGS technologies have helped us in providing unmatched discovery and 

characterization of molecular polymorphisms e.g. SNPs. However, before assaying the 

identified polymorphisms, there is a need to develop the genotyping platform. Genotyping-

by-sequencing (GBS) is an approach that identifies and genotypes the SNPs simultaneously. 

GBS is a robust, cost-effective, highly multiplexed sequencing approach considered a 

powerful approach for association studies and also to facilitate the refinement (anchoring and 

ordering) of the reference genome sequence while providing tools for GAB. With the 

continuous increase in NGS machine output, thereby continuous reduction in cost/sample, 

GBS will clearly become the marker genotyping platform of choice in coming years. Unlike 

other SNP discovery and genotyping platforms, GBS overcomes the issue of ascertainment 

bias of SNPs in a new germplasm. Keeping the cost/sample in view, it is also believed that 

GBS will provide an attractive option for genomic selection applications in breeding 

programs where cost per sample is considered a critical factor (Huang et al. 2010, Elshire et 

al. 2011, Poland et al. 2012). 

 

GBS approach involves the use of restriction enzymes (REs) for reducing the complexity of 

genomes followed by targeted sequencing of reduced proportions, so that each marker can be 

sequenced at high coverage across many individuals at low cost and high accuracy. Overall, 

the process of GBS involves the following sequential steps: (i) isolation of high quality DNA, 

(ii) selection of a suitable RE and adaptor, (iii) preparation of libraries for NGS, (iv) single-

end sequencing of either 48-plex or 96-plex library on NGS platforms like Genome Analyzer 

II or HiSeq 2000 of Illumina Inc. (www.illumina.com/systems.ilmn), (v) sequence quality 

assessment/filtering, (vi) sequence reads alignment, (vii) calling of SNPs. The complete 
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procedure of GBS has been described elsewhere (Elshire et al 2011) and a modified approach 

has been also developed and tested in wheat and barley recently (Poland et al. 2012). A 

workflow of GBS has been presented in Figure 3. Comparison of GBS approach with other 

marker systems has also been presented in Table 1.  

   

The choice of an appropriate RE is a critical factor in GBS approach for masking the 

repetitive regions of the genomes and, thereby, increases the chance of sampling markers 

from hypo-methylated gene rich regions of the genome. In the original GBS approach used in 

case of maize and barley, only one RE “ApeKI” (methylation-sensitive enzyme) was used to 

reduce the complexity and to select hypo-methylated regions of genome for sequencing 

(Elshire et al. 2011). However, recently, two REs (one„„rare-cutter‟‟ and one „„common-

cutter‟‟)-based GBS protocol has been developed and used for a species without a reference 

genome sequence. The two REs approach has advantages of generating suitable and uniform 

complexity reduction of complex genomes and has been earlier successfully tested in 

sequencing pools of BAC libraries for construction of physical maps (van Oeveren  et al. 

2011). Such GBS protocol has recently been used for genotyping bi-parental populations of 

wheat and barley for developing a genetically anchored reference map of identified SNPs and 

tags. This approach resulted in identification and mapping of >34,000 SNPs and 240,000 tags 

onto the Oregon Wolfe Barley reference map, and 20,000 SNPs and 367,000 tags on the 

Synthetic W97846 X Opata85 (SynOpDH) wheat reference map (Poland et al. 2012). In 

addition to above, Ion Torrent NGS platform has been also used for GBS in maize 

(http://www.invitrogen.com/etc/medialib/images/agricultural-

biotechnology/pdf.Par.20344.File.dat/Maize-Genotyping-by-Sequencing-on-Ion-Torrent.pdf). 

This involves a two-step GBS protocol for genotyping of maize inbreds/RILs at up to a few 

hundred pre-defined SNPs in only two working days. The method in brief involves: i) 

http://www.invitrogen.com/etc/medialib/images/agricultural-biotechnology/pdf.Par.20344.File.dat/Maize-Genotyping-by-Sequencing-on-Ion-Torrent.pdf
http://www.invitrogen.com/etc/medialib/images/agricultural-biotechnology/pdf.Par.20344.File.dat/Maize-Genotyping-by-Sequencing-on-Ion-Torrent.pdf
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amplification (via multiplex PCR) of Genotyping by Multiple Amplicon Sequencing 

(GBMAS ) targets, and ii) Addition of unique barcodes to the PCR products from each 

individual RIL and pooling of all the PCR products for Ion library construction and 

sequencing. 

 

In summary, GBS is a highly multiplexed approach that can typically lead to the discovery of 

thousands of SNPs in one experiment and may be suitable for population studies, germplasm 

characterization, high-density genetic mapping, genomic selection and other breeding 

applications in diverse organisms (Huang et al. 2010, Elshire et al. 2011, Poland et al. 2012). 

The GBS approach can be used even in those plant species that do not have the reference 

genome available. In such cases, the sequence tags can be treated as dominant markers for 

kinship analysis. Moreover, availability of the genome sequence in a given species helps in 

increasing the number of marker loci analyzed through imputation.  

 

 

Cost effectiveness of different high-throughput markers  

One of the critical requirements of deployment of markers in molecular breeding programs is 

their cost effectiveness. While comparing different high-throughput markers systems, the 

DArT marker system offers the lowest costs per marker data point. The cost per marker assay 

in commercial service offered by Triticarte P/L is ~US$ 0.02 (or approximately US $50 per 

genotype; Mantovani et al. 2008), which may be >6 times lower than the costs of SSR 

genotyping. A similar comparison with Illumina GoldenGate assays indicate, that DArT 

assays are only ~3 times cheaper (Yan et al. 2010). However, GoldenGate assay based-SNP 

genotyping is 100-fold faster than gel-based SSR methods leading to cost savings of ~75% 

(Yan et al. 2010). GBS  available in -48, -96, and -384 array-plexes may further reduce the 

cost of genotyping and may become the method of choice for future plant genotyping. The 
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continuous reduction in costs of GBS is due to increases in multiplexing, and, thus, lower 

labor, reagent, and sequencing costs. For instance, the labor cost was decreased from ~$2.00 

for 48 to ~$0.50 for 384-plexes, while sequencing costs decreased from ~$33.00 for a 48-plex 

to ~$9.00 for a 384-plex assay. It is, therefore, obvious that the increase in throughput of 

markers is coupled to a reduction in their costs. Therefore, advances in NGS technologies 

will continuously help in reducing the costs of sequencing and, thus, the reduction in the cost 

of marker development and application (Davey et al. 2011). 

 

 

Summary and outlook 

As is evident from the discussion above, that varying levels of throughput (low to ultra-high) 

are available. Thus, an appropriate marker system can be selected based on the need. For 

instance, Illumina‟s GoldenGate assays and Infinium assays as well as DArT markers are 

suitable for the construction of genetic linkage maps and GWAS studies, but these marker 

systems may not be suitable for molecular breeding applications such as marker-assisted 

selection (MAS), or marker-assisted backcrossing (MABC). One of the reasons for this is that 

genotyping costs for all the SNPs present in GoldenGate or Infinium assays is in lieu of only 

few informative SNP markers that are linked to the traits of interest. Alternatively, the 

associated markers present in GoldenGate or Infinium assays need to be converted into a 

user-friendly assay like KASPar or TaqMan assays. KASpar assays have become very cost 

effective in case of large populations  (Figure 2).  

 

SNP markers that are transferable across different genotyping chemistries will serve as 

flexible selection tools for plant breeders in marker-assisted selection (MAS). However, 

technical issues may jeopardize the conversion and application of a particular marker for 

MAS (Mammadov et al. 2011). Recently, a set of 695 putative functional GoldenGate assay 
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based-SNP assays were identified in maize and converted into Infinium, TaqMan, and 

KASPar chemistries with a high efficiency ranging from 89% for GG-to-Infinium to 98% 

from GG-to-KASPar (Mammadov et al. 2011). As a result of this conversion, a set of 162 

highly polymorphic, putative functional and versatile SNP assays were identified and will be 

universally utilized in molecular genetics and breeding projects. 

 

In contrast, low to moderate through-put marker systems like SSRs can be deployed for 

selection of targeted genomic loci in breeding populations without any difficulty. While 

comparing the value of SSR with DArT markers, it was found that SSR markers can be 

preselected and may, therefore, represent whole genome coverage, which is not the case of 

DArT markers (Yan et al. 2010). The other obstacle is that one cannot use  a selected DArT 

marker, identified through QTL interval mapping or association mapping, directly for 

marker-assisted selection (MAS) procedures. For using an associated DArT marker in MAS, 

the marker needs to be converted to a user-friendly assay. For instance, five robust SCARs 

were developed from three non-redundant DArTs, that co-segregated with crown rust 

resistance gene “Pc91” in oat (McCartney et al. 2011). However, the conversion of the 

associated DArT marker to a PCR-based marker is not always possible especially in cases 

where sequence data for DArT clones are not available.  

 

For marker genotyping of a large number of marker loci for applications such as genome-

wide association studies (GWAS) and genomic selection (GS), the GBS approach seems to 

be the best approach in terms of costs as well as throughput. With the increasing availability 

of reference genome sequences in a range of crop species, GBS is going to be the approach of 

choice in majority of the plant species in the coming years. It is anticipated that availability 

and routine use of GBS technology may re-orient molecular breeding programmes from MAS 
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to GS, which will allow the realization the full potential of genomics-assistsed breeding in 

crop improvement. 

 

Acknowledgements: 

Authors are thankful to Theme Leader Discretionary Grant of CGIAR Generation Challenge 

Programme (GCP) and Centre of Excellence (CoE) grant from Department of Biotechnology 

(DBT) for funding the research of authors. 

 

References 

1. Akbari M, Wenzl P, Caig V, Carling J, Xia L, Yang S, Uszynski G, Mohler V, 

Lehmensiek A, Kuchel H, Hayden MJ, Howes N, Sharp P, Vaughan P, Rathmell B, 

Huttner E, Kilian A (2006) Diversity arrays technology (DArT) for high-throughput 

profiling of the hexaploid wheat genome. Theor Appl Genet 113:1409-1420 

2. Akhunov E, Nicolet C, Dvorak J (2009) Single nucleotide polymorphism genotyping 

in polyploidy wheat with the Illumina GoldenGate assay. Theor Appl Genet 119:507-

517 

3. Allen AM, Barker GLA, Berry ST, Coghill JA, Gwilliam R, Kirby S, Robinson P, 

Brenchley RC, D‟Amore R, McKenzie N, Waite D, Hall A, Bevan M, Hall N, 

Edwards KJ (2011) Transcript-specific, single-nucleotide polymorphism discovery 

and linkage analysis in hexaploid bread wheat (Triticum aestivum L.). Plant 

Biotechnol J DOI: 10.1111/j.1467-7652.2011.00628.x 



19 
 

4. Appleby N, Edwards D, Batley J (2009) New technologies for ultra-high throughput 

genotyping in plants. In: Somers DJ, Langridge P, Gustafson JP (eds) Plant Genomics 

Methods & Protocols,  Humana Press, Hertfordshire, pp 19-39. 

5. Badea A, Eudes F, Salmon D, Tuvesson S, Vrolijk A, Larsson CT, Caig V, Huttner E, 

Kilian A, Laroche A  (2011)  Development and assessment of DArT markers in 

triticale. Theor Appl Genet 122:1547-1560 

6. Bagge M, Lűbberstedt T (2008) Functional markers in wheat: technical and economic 

aspects. Mol Breeding 22:319-328 

7. Barrett BA, Kidwell KK, Fox PN (1998)  Comparison of AFLP and pedigree-based 

genetic diversity assessment methods using wheat cultivars from the pacific 

Northwest. Crop Sci 38:1271-1278 

8. Bolibok-Brągoszewska H, Heller-Uszyńska K, Wenzl P, Uszyński G, Kilian A, 

Rakoczy-Trojanowska M (2009) DArT markers for the rye genome-genetic diversity 

and mapping. BMC Genomics 10:578 

9. Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, 

Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner 

PL, Rudd JC, Haley S, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010)  

Population- and genome-specific patterns of linkage disequilibrium and SNP variation 

in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727 

10. Chao S, Sharp PJ, Worland AJ, Warham EJ, Koebner RMD, Gale MD (1989) RFLP-

based genetic maps of wheat homeologous group7 chromosomes. Theor Appl Genet 

78: 495-904 



20 
 

11. Chen W, Mingus J, Mammadov J, Backlund JE, Greene T, Thompson S, Kumpatla S 

(2010) KASPar: a simple and cost-effective system for SNP genotyping. In: Plant and 

Animal Genomes XVII Conf, San Diego, USA, p194 

12. Cheung F, Haas BJ, Goldberg SM, May GD, Xiao Y, Town CD (2006) Sequencing 

Medicago truncatula expressed sequenced tags using 454 Life Sciences technology. 

BMC Genomics 7:272 

13. Close TJ, Bhat PR, Lonardi S, Wu Y, Rostoks N, Ramsay L, Druka A, Stein N, 

Svensson TJ, Wanamaker S, Bozdag S, Roose ML, Moscou MJ, Chao S, Varshney 

RK, Szucs P, Sato K, Hayes PM, Matthews DE, Kleinhofs A, Muehlbauer GJ, Young 

JD, Marshall DF, Madishetty K, Fenton RD, Condamine P, Graner A, Waugh R 

(2009) Development and implementation of high-throughput SNP genotyping in 

barley. BMC Genomics 10:582 

14. Cortes AJ, Chavarro MC, Blair MW (2011) SNP marker diversity in common bean 

(Phaseolus vulgaris L.). Theor Appl Genet 123: 827-845 

15. Davey JW, Hohenlohe PA, Etter PD, Bone JQ, Catchen JM, Blaxter ML (2011) 

Genome-wide genetic marker discovery and genotyping using next-generation 

sequencing. Nature Rev Genet 12:499-510 

16. Delmas CE, Lhuillier E, Pornon A, Escaravage N (2011) Isolation and 

characterization of microsatellite loci in Rhododendron ferrugineum (Ericaceae) using 

pyrosequencing technology. Am J Bot 98:e120-e122 

17. Deulvot C, Charrel H, Marty A, Jacquin F, Donnadieu C, Lejeune-Henaut I, Burstin J, 

Aubert G (2010) Highly-multiplexed SNP genotyping for genetic mapping and 

germplasm diversity studies in pea. BMC Genomics 11:468 



21 
 

18. Druka A, Franckowiak J, Lundqvist U, Bonar N, Alexander J, Houston K, Radovic S, 

Shahinnia F, Vendramin V, Morgante M, Stein N, Waugh R (2011) Genetic 

dissection of barley morphology and development. Plant Physiol 155:617-627 

19. Eckert AJ, Heerwaarden JV, Wegryzn JL, Nelson CD, Ross-Ibarra J, Gonzalez-

Martinez SC, Neaale DB (2010) Patterns of population structure and environmental 

associations to aridity across the range of loblolly pine (Pinustaeda L., Pinaceae). 

Genetics 185:969-982 

20. Ellsworth DL, Rittenhouse KD, Honeycutt RL (1993) Artifactual variation in 

randomly amplified polymorphic DNA banding patterns. BioTechniques 14:214-217 

21. Elshire  RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE 

(2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity 

species. PLoS ONE 6:e19379 

22. Emami MK, Sharma B (1999) Linkage between three morphological markers in 

lentil. Plant Breeding 118:579-581 

23. Faccioli P, Pecchioni N, Stanca AM, Terzi V (1999) Amplified fragment length 

polymorphism (AFLP) markers for barley malt fingerprinting. J Cereal Sci 29:257-

260 

24. Gonzalez-Ibeas D, Blanca J, Donaire L, Saladie M, Mascarell-Creus A, Delgado A, 

Garcia-Mas J, Llave C, Aranda MA (2011) Analysis of the melon (Cucumis melo) 

small RNAome by high-throughput pyrosequencing. BMC Genomics 12:393 

25. Graner A, Jahoor A, Schondelmaier J, Siedler H, Pillen K,  Fischbeck G,  Wenzel G,  

Herrmann RG (1991) Construction of an RFLP map of barley. Theor Appl Genet 83: 

250–256 

http://www.springerlink.com/content/?Author=G.+Fischbeck
http://www.springerlink.com/content/?Author=G.+Wenzel
http://www.springerlink.com/content/?Author=R.+G.+Herrmann
http://www.springerlink.com/content/?Author=R.+G.+Herrmann


22 
 

26. Griffin PC, Robin C, Hoffmann AA (2011) A next-generation sequencing method for 

overcoming the multiple gene copy problem in polyploidy phylogenetics, applied to 

Poa grasses. BMC Biology 9:19 

27. Gunderson KL, Steemers FJ, Lee G, Mendoza LG, Chee MS (2005) A genome-wide 

scalable SNP genotyping assay using microarray technology. Nat Genet 37:549-554  

28. Gupta PK, Varshney RK, Sharma PC, Ramesh B (1999) Molecular markers and their 

application in wheat breeding. Plant Breeding 118:369-390 

29. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers 

for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 

113:163-185 

30. Gupta PK, Roy JK, Prasad M (2001) Single nucleotide polymorphisms: A new 

paradigm for molecular marker technology and DNA polymorphism detection with 

emphasis on their use in plants. Curr Sci 80:524-535 

31. Gupta PK, Rustagi S, Mir RR (2008) Array-based high-throughput DNA markers for 

crop improvement. Heredity 101:1-14 

32. Gupta PK, Kumar J, Mir RR, Kumar A (2010) Marker-Assisted Selection as a 

component of conventional plant breeding. Plant Breed Rev 33:145-217 

33. Haun WJ, Hyten DL, Xu WW, Gerhardt DJ, Albert TJ, Richmond T, Jeddeloh JA, Jia 

G, Springer NM, Vance CP, Stupar RM (2011) The composition and origins of 

genomic variation among individuals of the soybean reference cultivar Williams 82. 

Plant Physiol 155:645-655 



23 
 

34. Helentjaris T (1987) A genetic linkage map for maize based on RFLPs. Trends Genet 

3:217-221 

35. Heun M, Helentjaris T (1993) Inheritance of RAPDs in F1 hybrids of corn. Theor 

Appl Genet 85:961-968 

36. Hiremath PJ, Farmer A, Cannon SB, Woodward J, Kudapa H, Tuteja R, Kumar A, 

Bhanuprakash A, Mulaosmanovic B, Gujaria N, Krishnamurthy L, Gaur PM, 

KaviKishore PB, Shah T, Srinivasan R, Lohse M, Xiao Y, Town CD, Cook DR, May 

GD, Varshney RK (2011) Large-scale transcriptomic analysis in chickpea (Cicer 

arietinum L.), an orphan legume crop of the semi-arid tropics of Asia and Africa. 

Plant Biotechnol J 9:922-931  

37. Huang X, Zeller FJ, Hsam SL, Wenzel G, Mohler V (2000) Chromosomal location of 

AFLP markers in common wheat utilizing nulli-tetrasomic stocks. Genome 43:298-

305 

38. Huang X, Wei X, Sang Tap, Zhao Q, feng Q, Zhao Y, Li C, Zhu C, Lu T, Zhang Z, Li 

M, FanD, Guo Y, Wang A, Wang L, Deng L, Li W, Lu Y, Weng O, Liu K, Huang T, 

Zhou T, Jing Y, Li W, Lin Z et al. (2010) Genome-wide association studies of 14 

agronomic traits in rice landraces. Nat Genet 42:961-967 

39. Hyten DL, Song Q, Choi IY, Yoon MS, Specht JE, Matukumalli LK, Nelson RL, 

Shoemaker RC, Young ND, Cregan PB (2008) High-throughput genotyping with the 

GoldenGate assay in the complex genome of soybean. Theor Appl Genet 116:945-952 

40. Hyten DL, Smith JR, Fredrick RD, Tucker ML, Song Q, Cregan PB (2009) Bulked 

segregant analysis using the GoldenGate assay to locate the Rpp3 locus that confers 

resistance to soybean rust in soybean. Crop Sci 49:265-271 



24 
 

41. Hyten DL, Cannon SB, Song Q, Weeks N, Fickus EW, Shoemaker RC, Specht JE, 

Farmer AD, May GD, Cregan PB (2010a) High-throughput SNP discovery through 

deep resequencing of a reduced representation library to anchor and orient scaffolds in 

the soybean whole genome sequence. BMC Genomics 11:38 

42. Hyten DL, Song Q, Fickus EW, Quigley CV, Lim J, Choi I, Hwang E, Pastor –

Corrales M, Cregan PB (2010b) High-throughput SNP discovery and assay 

development in common bean. BMC Genomics 11:475 

43. Jaccoud D, Peng K, Feinstein D, Kilian A (2001) Diversity arrays: a solid state 

technology for sequence information independent genotyping. Nucleic Acids Res 

29:25-31 

44. Jain SM, Brar DS, Ahloowalia BS (2002) Molecular techniques in crop improvement. 

Kluwer Academic, The Netherlands, pp601 

45. Jing H-C, Bayon C, Kanyuka K, Berry S, Wenzl P, Huttner E, Kilian A, Hammond-

Kosack KE (2009) DArT markers: diversity analyses, genomes comparison, mapping 

and integration with SSR markers in Triticum monococcum. BMC Genomics 10:458  

46. Jones N, Ougham H, Thomas H, Pasakinskiene I (2009) Markers and mapping 

revisited: finding your gene. New Phytologist 183:935-966 

47. Keim P, Diers BW, Olson TC, Shoemaker RC (1990) RFLP mapping in soybean: 

Association between marker loci and variation in quantitative traits. Genetics 

126:735-742 

48. Kwok P (2001) Methods for genotyping single nucleotide polymorphisms. Annu Rev 

Genomics Hum Genet 2:235-258 



25 
 

49. Langmead B, Schtaz MC, Lin J, Pop M, Salzberg SL (2009) Searching SNPs with 

cloud computing. Genome Biol 10:R134 

50. Mace EM, Xia L, Jordan DR, Halloran K, Parh DK, Huttner E, Wenzl, Kilian A 

(2008) DArT markers: diversity analyses and mapping in Sorghum bicolor. BMC 

Genomics 9:26 

51. Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, 

Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates 

multiple component maps and high-throughput Diversity Array Technology (DArT) 

markers. BMC Plant Biol 9:13 

52. Mackill DJ, Zhang Z, Redona ED, Colowit PM (1996) Level of polymorphism and 

genetic mapping of AFLP markers in rice. Genome 39:969-977 

53. Maheshwaran M, Subudhi PK, Nandi S, Xu JC, Parco A, Yang DC, Huang N (1997) 

Polymorphism, distribution and segregation of AFLP markers in a doubled haploid 

rice population. Theor Appl Genet 94:39-45 

54. Mammadov J, Chen W, Mingus J, Thompson S, Kumpatla (2011) Development of 

versatile gene-based SNP assays in maize (Zeamays L.). Mol Breeding doi: 

10.1007/s11032-011-9589-3 

55. Mantovani P, Maccaferri M, Sanguineti MC, Tuberosa R, Kilian A, et al. (2008) An 

integrated DArT-SSR linkage map of durum wheat. Mol Breeding 22:629-648.  

56. Maughan PJ, Maroof MAS, Buss GR, Huetis GM (1996) Amplified fragment length 

polymorphism (AFLP) in soybean: species diversity, inheritance, and near-isogenic 

line analysis. Theor Appl Genet 93:392-401 



26 
 

57. Maughan PJ, Smith SM, Fairbanks DJ, Jellen EN (2011) Development, 

characterization and linkage mapping of single nucleotide polymorphisms in the grain 

Amaranths (Amaranthus sp.). The Plant Genome 4:92-101 

58. McCartney CA, Stonehouse RG, Rossnagel BG, Eckstein PE, Scoles GJ, Zatorski T, 

Beattie AD, Chong J (2011) Mapping of the oat crown rust resistance gene Pc91. 

Theor Appl Genet 122:317-325 

59. McCouch SR, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD 

(1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815-829 

60. McCouch SR, Zhao K, Wright M, Tung CW, Ebana K, Thomson M, Reynolds A, 

Wang D, DeClerck G, Ali L, McClung A, Eizenga G, Bustamanate C (2010)  

Development of genome-wide SNP assays for rice. Breed Sci 60:524-535 

61. Muchero W, Diop NN, Bhat PR, Fenton RD, Wanamaker S, Pottorff  M, Hearne S, 

Cisse N, Fatokun C, Ehlers JD, Roberts PA, Close TJ (2009) A consensus genetic 

map of cowpea [Vigna ungiculata (L) Walp.] and synteny based on EST-derived 

SNPs. Proc Natl Acad Sci USA 106:18159-18164 

62. Newell MA, Cook D, Tinker NA, Jannink JL (2011) Population structure and linkage 

disequilibrium in oat (Avena sativa L.): implications for genome-wide association 

studies. Theor Appl Genet 122:623-632 

63. Nguyen TT, Taylor PWJ, Redden RJ, Ford R (2003) Genetic diversity estimates in 

Cicer using AFLP analysis. Plant Breed 123:173-179 

64. van Oeveren J, de Ruiter M, Jesse T, van der Poel H, Tang J, et al. (2011) Sequence-

based physical mapping of complex genomes by whole genome profiling. Genome 

Res 21: 618–625. 



27 
 

 

65. Ottesen EA, Marin R, Preston CM, Young CR, Ryan JP, Scholin CA, Delong EF 

(2011) Metatranscriptomic analysis of autonomously collected and preserved marine 

bacterioplankton. ISME J doi: 10.1038/ismej.2011.70 

66. Peleg Z, Saranga Y, Suprunova T, Ronin Y, Roder MS, Kilian A, Korol AB, Fahima 

T (2008) High-density genetic map of durum wheat × wild emmer wheat based on 

SSR and DArT markers. Theor Appl Genet 117:103-115 

67. Poland JA,  Brown PJ, Sorrells ME, Jannink J-L (2012)  Development of high-density 

genetic maps for barley and wheat using a novel two-enzyme genotyping-by-

sequencing approach. PLoS ONE 7: e32253 

 

68. Rafalski A (2002) Applications of single nucleotide polymorphisms in crop genetics. 

Curr Opin Plant Biol 5:94-100 

69. Rostoks N, Ramsay L, MacKenzie K, Cardle L, Bhat PR, Roose ML, Svensson JT, 

Stein N, Varshney RK, Marshall DF, Graner A, Close TJ, Waugh R (2006) Recent 

history of artificial outcrossing facilitates whole genome association mapping in elite 

inbred crop varieties. Proc Natl Acad Sci USA, 103:18656-18661 

70.  Rounsley R, Marri PR, Yu Y, He R, Sisneros N, Goicoechea JL, Lee SJ, Angelova A, 

Kudrna D, Luo M, Affourtit J, Desany B, Knight J, Niazi F, Egholm M, Wing RA 

(2009) De novo next generation sequencing of plant genomes. Rice 2:35-43 

71. Semagn K, Bjornstad A, Skinnes H, Maroy AG, Tarkegne Y, William M (2006) 

Distribution of DArT, AFLP and SSR markers in a genetic linkage map of a doubled-

haploid hexaploid wheat population. Genome 49:545-555. 



28 
 

72. Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-

specific PCR markers in barley and wheat. Theor Appl Genet 98:1072-1078 

73. Shendure J, Ji H (2008) Next-generation DNA sequencing. Nat Biotech 26:1135-1145 

74. Simon CJ, Muehlbauer FJ (1997) Construction of a chickpea linkage map and its 

comparison with maps of pea and lentil. J Hered 88:115-119 

75. Soleimani VD, Baum BR, Johnson DA (2002) AFLP and pedigree-based genetic 

diversity estimates in modern cultivars of durum wheat [Triticum turgidum L. sub sp. 

durum (Desf.) Husn.]. Theor Appl Genet 104:350-357 

76. Steemers FJ, Chang W, Lee G, Barker DL, Shen R, Gunderson KL (2006) Whole-

genome genotyping with the single-base extension assay. Nat Methods 3:31–33 

77. Steemers FJ, Gunderson KL (2007) Whole genome genotyping technologies on the 

BeadArray platform. Biotechnol J 2:41–49 

78. Syvanen A (2005) Towards genome-wide SNP genotyping. Nat Genet 37:S5-S10 

79. Tanksley SD (1983) Molecular markers in plant breeding. Plant Mol Biol Reporter 

1:3-8 

80. Tanksley SD, Young ND, Paterson AH, Bonierbale MW (1989) RFLP mapping in 

plant breeding: new tools for an old science. Nat Biotech  7:257-264 

81. Tanksley SD, Ganal MW, Prince JP, deVicente MC, Bonierbale MW, Broun P, 

Fulton TM, Giovannoni JJ, Grandillo S, Martin GB, Messenger J, Miller C, Miller L, 

Patreson AH, Pineda O, Roder MS, Wing RA, Wu W, Young  ND (1992) High 

density molecular linkage maps of the tomato and potato genomes. Genetics 

132:41141-41160 



29 
 

82. Thomson MJ, Zhao K, Wright M, McNally KL, Rey J, Tung C-W, Reynolds A, 

Scheffler B, Eizenga G, McClung A et al (2011) High-throughput single nucleotide 

polymorphism for breeding applications in rice using the BeadXpress platform. Mol 

Breeding 29: 875-886 

83. Thudi M, Li Y, Jackson SA, May GD, Varshney RK (2012) Current state-of-art of 

sequencing technologies for plant genomics research. Brief Funct Genomics 11: 3-11 

84. Varshney RK, Andreas Graner, Sorrells ME (2005) Genic microsatellite markers in 

plants: features and applications. Trends Biotechnol 23:48-55 

85. Varshney RK, Nayak SN, May GD, Jackson SA (2009) Next generation sequencing 

technologies and their implications for crop genetics and breeding. Trends Biotechnol 

27:522-530 

86. Varshney RK (2010) Gene-based marker systems in plants: High throughput 

approaches for marker discovery and genotyping. In: Jain SM, Brar DS (eds) 

Molecular techniques in crop improvement. Springer, The Netherlands, pp 119-142 

87. Vos P, Hogers R, Bleeker M, Reijans M, van deLee T, Hornes M, Frijters A, Pot J, 

Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA 

fingerprinting. Nucleic Acid Res 23:4407-4414 

88. White J, Law JR, MacKay KJ, Chalmers KJ, Smith JSC, Kilian A, Powell W (2008) 

The genetic diversity of UK, US and Australian cultivars of Triticum aestivum 

measured by DArT markers and considered by genome. Theor Appl Genet 116:439-

453 



30 
 

89. Williams JGK, Kubelic AR, Livak KJ, Rafalsky JA, Tingey SV (1990) DNA 

polymorphism amplified by arbitrary primers are useful as genetic markers Nucleic 

Acids Res 18:6532-6335 

90. Winter P, Benko-Iseppon AM, Hűttel B, Ratnaparkhe M, Tullu A, Sonnante G, Pfaff 

T, Tekeoglu M, Santra D, Sant VJ, Rajesh PN, Kahl G, Muehlbauer (2000) A linkage 

map of the chickpea (Cicer arietinum L.) genome based on recombinant inbred lines 

from a C.arietinum × C. reticulatum cross: localization of resistance genes for 

Fusarium wilt races 4 and 5. Theor Appl Genet 101:1155-1163 

91. Xu DH, Ban T (2004) Conversion of AFLP markers associated with FHB resistance 

in wheat into STS markers with an extension-AFLP method. Genome 47:660-665 

92. Yan J, Yang X, Shah T, Villeda HS, Li H, Warburton M, Zhou Y, Crouch JH, Xu Y 

(2010) High-throughput SNP genotyping with the GoldenGate assay in maize. Mol 

Breeding 25:441-451 

93. Young WP, Schupp JM, Keim P (1999) DNA methylation and AFLP marker 

distribution in the soybean genome. Theor Appl Genet 99:785-792 

94. Zhou X, Sunkar R, Jin H, Zhu JK, Zhang W (2009) Genome-wide identification and 

analysis of small RNAs originated from natural antisense transcripts in Oryza sativa. 

Genome Res 19:70-80 

95. Zhu J, Gale MD, Quarrie S, Jackson MT, Bryan GJ (1998) AFLP markers for the 

study of rice biodiversity. Theor Appl Genet 96:602-611 

 

 

 

 



31 
 

Table 1. Comparison between different marker systems 

Sl. 

No. 

Attribute Low-

throughput 

markers 

Medium-throughput  markers High-throughput markers Ultra high-throughput 

markers  

RFLP RAPD AFLP SSR KASPar GoldenGate 

Beadchip 

GoldenGate 

Beadarray 

DArT assays Infinium 

assays 

GBS 

1 DNA 

amount/reaction 

2-10µg 5-10 ng ~1 µg 10-20ng ≥5ng + + 50-100ng + 100ng 

2 DNA quality  high moderate moderate moderate moderate moderate moderate high moderate high 

3 Cost high less high high low high high Cheapest high Low/moderate 

4 Reproducibility very high low high high high high high high high high 

5 Radioactivity yes - yes - - - -  - - - 

6 Markers 

assayable  

<100 <100 >100 >500 as per 

requirement 

48-384 3,072 96-5,000 1,000-

5,000 

>1,000 - 

7 Technical 

procedure 

tedious simpler tedious simpler automated automated automated simpler automated automated 

8 Sample size <50-100 <100 <100 48-384 <100-1,000 >1,000-3,072 48-1,000 100-500 >1,000 >1,000 

9 Sequence 

information 

- - - yes yes yes yes  - yes yes 

10 Multiplexing difficult difficult possible possible possible possible possible No possible possible 
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Figure legends 

1. Low to ultra high-throughput cost-effective marker assay platforms for 

genotyping 

Horizontal axis indicates number of loci that can be assayed in a single experiment, 

while the vertical axis indicates the number of lines/samples that can be genotyped in 

high-throughput manner at low cost 

 

2. Marker assay platforms for plant genetic analysis 

A diagrammatic representation of utilization of different sequencing platforms for 

marker discovery and their subsequent use in plant genetic analyses. 

3. A workflow for genotyping-by-sequencing (GBS) approach 

A schematic representation of various steps involved in GBS approach, adapted from 

Elshire et al. (2011) and Poland et al. (2012), has been shown. 

 


