1,317 research outputs found

    Enhancement of pairing in a boson-fermion model for coupled ladders

    Full text link
    Motivated by the presence of various charge inhomogeneities in strongly correlated systems of coupled ladders, a model of spatially separated bosonic and fermionic degrees of freedom is numerically studied. In this model, bosonic chains are connected to fermionic chains by two types of generalized Andreev couplings. It is shown that for both types of couplings the long-distance pairing correlations are enhanced. Near quarter filling, this effect is much larger for the splitting of a pair in electrons which go to the two neighboring fermionic chains than for a pair hopping process. It is argued that the pairing enhancement is a result of the nearest neighbor Coulomb repulsion which tunes the competition between pairing and charge ordering.Comment: 7 pages, 7 eps figures, enlarged version accpeted in Phys. Rev.

    On the soliton width in the incommensurate phase of spin-Peierls systems

    Full text link
    We study using bosonization techniques the effects of frustration due to competing interactions and of the interchain elastic couplings on the soliton width and soliton structure in spin-Peierls systems. We compare the predictions of this study with numerical results obtained by exact diagonalization of finite chains. We conclude that frustration produces in general a reduction of the soliton width while the interchain elastic coupling increases it. We discuss these results in connection with recent measurements of the soliton width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex

    Effects of domain walls on hole motion in the two-dimensional t-J model at finite temperature

    Full text link
    The t-J model on the square lattice, close to the t-J_z limit, is studied by quantum Monte Carlo techniques at finite temperature and in the underdoped regime. A variant of the Hoshen-Koppelman algorithm was implemented to identify the antiferromagnetic domains on each Trotter slice. The results show that the model presents at high enough temperature finite antiferromagnetic (AF) domains which collapse at lower temperatures into a single ordered AF state. While there are domains, holes would tend to preferentially move along the domain walls. In this case, there are indications of hole pairing starting at a relatively high temperature. At lower temperatures, when the whole system becomes essentially fully AF ordered, at least in finite clusters, holes would likely tend to move within phase separated regions. The crossover between both states moves down in temperature as doping increases and/or as the off-diagonal exchange increases. The possibility of hole motion along AF domain walls at zero temperature in the fully isotropic t-J is discussed.Comment: final version, to appear in Physical Review

    Hole-Pairs in a Spin Liquid: Influence of Electrostatic Hole-Hole Repulsion

    Full text link
    The stability of hole bound states in the t-J model including short-range Coulomb interactions is analyzed using computational techniques on ladders with up to 2×302 \times 30 sites. For a nearest-neighbors (NN) hole-hole repulsion, the two-holes bound state is surprisingly robust and breaks only when the repulsion is several times the exchange JJ. At 10\sim 10% hole doping the pairs break only for a NN-repulsion as large as V4JV \sim 4J. Pair-pair correlations remain robust in the regime of hole binding. The results support electronic hole-pairing mechanisms on ladders based on holes moving in spin-liquid backgrounds. Implications in two dimensions are also presented. The need for better estimations of the range and strength of the Coulomb interaction in copper-oxides is remarked.Comment: Revised version with new figures. 4 pages, 5 figure

    Influence of the anion potential on the charge ordering in quasi-one dimensional charge transfer salts

    Full text link
    We examine the various instabilities of quarter-filled strongly correlated electronic chains in the presence of a coupling to the underlying lattice. To mimic the physics of the (TMTTF)2_2X Bechgaard-Fabre salts we also include electrostatic effects of intercalated anions. We show that small displacements of the anion can stabilize new mixed Charged Density Wave-Bond Order Wave phases in which central symmetry centers are suppressed. This finding is discussed in the context of recent experiments. We suggest that the recently observed charge ordering is due to a cooperative effect between the Coulomb interaction and the coupling of the electronic stacks to the anions. On the other hand, the Spin-Peierls instability at lower temperature requires a Peierls-like lattice coupling.Comment: Latex, 4 pages, 4 postscript figure

    Unveiling shocks in planetary nebulae

    Full text link
    The propagation of a shock wave into a medium is expected to heat the material beyond the shock, producing noticeable effects in intensity line ratios such as [O III]/Halpha. To investigate the occurrence of shocks in planetary nebulae (PNe), we have used all narrowband [O III] and Halpha images of PNe available in the HST archive to build their [O III]/Halpha ratio maps and to search for regions where this ratio is enhanced. Regions with enhanced [O III]/Halpha emission ratio can be ascribed to two different types of morphological structures: bow-shock structures produced by fast collimated outflows and thin skins enveloping expanding nebular shells. Both collimated outflows and expanding shells are therefore confirmed to generate shocks in PNe. We also find regions with depressed values of the [O III]/Halpha ratio which are found mostly around density bounded PNe, where the local contribution of [N II] emission into the F656N Halpha filter cannot be neglected.Comment: 13 pages, 9 figures, 3 tables; To appear in Astronomy & Astrophysic

    Relationship between fibre orientation and tensile strength of natural collagen membranes for heart valve leaflets

    Get PDF
    Heart valve prostheses are used to replace native heart valves which that are damaged because of congenital diseases or due to ageing. Biological prostheses made of bovine pericardium are similar to native valves and do not require any anticoagulation treatment, but are less durable than mechanical prostheses and usually fail by tearing. Researches are oriented in improving the resistance and durability of biological heart valve prostheses in order to increase their life expectancy. To understand the mechanical behaviour of bovine pericardium and relate it to its microstructure (mainly collagen fibres concentration and orientation) uniaxial tensile tests have been performed on a model material made of collagen fibres. Small Angle Light Scattering (SALS) has been also used to characterize the microstructure without damaging the material. Results with the model material allowed us to obtain the orientation of the fibres, relating the microstructure to mechanical performanc

    Symmetry breaking in small rotating cloud of trapped ultracold Bose atoms

    Get PDF
    We study the signatures of rotational and phase symmetry breaking in small rotating clouds of trapped ultracold Bose atoms by looking at rigorously defined condensate wave function. Rotational symmetry breaking occurs in narrow frequency windows, where the ground state of the system has degenerated with respect to the total angular momentum, and it leads to a complex wave function that exhibits vortices clearly seen as holes in the density, as well as characteristic vorticity. Phase symmetry (or gauge symmetry) breaking, on the other hand, is clearly manifested in the interference of two independent rotating clouds.Comment: 4 pages, 2 figure

    Charge and spin ordering, and charge transport properties in a two-dimensional inhomogeneous t-J model

    Full text link
    We study a two-dimensional t-J model close to the Ising limit in which charge inhomogeneity is stabilized by an on-site potential e_s, by using diagonalization in a restricted Hilbert space and finite temperature Quantum Monte Carlo. Both site and bond centered stripes are considered and their similitudes and differences are analyzed. The amplitude of charge inhomogeneity is studied as e_s -> 0. Moreover, we show that the anti-phase domain ordering occurs at a much lower temperature than the formation of charge inhomogeneities and charge localization. Hole-hole correlations indicate a metallic behavior of the stripes with no signs of hole attraction. Kinetic energies and current susceptibilities are computed and indications of charge localization are discussed. The study of the doping dependence in the range 0.083 < x < 0.167 suggests that these features are characteristic of the whole underdoped region.Comment: minor changes, to be published in Physical Review
    corecore