1,144 research outputs found

    On the soliton width in the incommensurate phase of spin-Peierls systems

    Full text link
    We study using bosonization techniques the effects of frustration due to competing interactions and of the interchain elastic couplings on the soliton width and soliton structure in spin-Peierls systems. We compare the predictions of this study with numerical results obtained by exact diagonalization of finite chains. We conclude that frustration produces in general a reduction of the soliton width while the interchain elastic coupling increases it. We discuss these results in connection with recent measurements of the soliton width in the incommensurate phase of CuGeO_3.Comment: 4 pages, latex, 2 figures embedded in the tex

    Area law and vacuum reordering in harmonic networks

    Full text link
    We review a number of ideas related to area law scaling of the geometric entropy from the point of view of condensed matter, quantum field theory and quantum information. An explicit computation in arbitrary dimensions of the geometric entropy of the ground state of a discretized scalar free field theory shows the expected area law result. In this case, area law scaling is a manifestation of a deeper reordering of the vacuum produced by majorization relations. Furthermore, the explicit control on all the eigenvalues of the reduced density matrix allows for a verification of entropy loss along the renormalization group trajectory driven by the mass term. A further result of our computation shows that single-copy entanglement also obeys area law scaling, majorization relations and decreases along renormalization group flows.Comment: 15 pages, 6 figures; typos correcte

    Violation of area-law scaling for the entanglement entropy in spin 1/2 chains

    Full text link
    Entanglement entropy obeys area law scaling for typical physical quantum systems. This may naively be argued to follow from locality of interactions. We show that this is not the case by constructing an explicit simple spin chain Hamiltonian with nearest neighbor interactions that presents an entanglement volume scaling law. This non-translational model is contrived to have couplings that force the accumulation of singlet bonds across the half chain. Our result is complementary to the known relation between non-translational invariant, nearest neighbor interacting Hamiltonians and QMA complete problems.Comment: 9 pages, 4 figure

    From spinons to magnons in explicit and spontaneously dimerized antiferromagnetic chains

    Full text link
    We reconsider the excitation spectra of a dimerized and frustrated antiferromagnetic Heisenberg chain. This model is taken as the simpler example of compiting spontaneous and explicit dimerization relevant for Spin-Peierls compounds. The bosonized theory is a two frequency Sine-Gordon field theory. We analize the excitation spectrum by semiclassical methods. The elementary triplet excitation corresponds to an extended magnon whose radius diverge for vanishing dimerization. The internal oscilations of the magnon give rise to a series of excited state until another magnon is emited and a two magnon continuum is reached. We discuss, for weak dimerization, in which way the magnon forms as a result of a spinon-spinon interaction potential.Comment: 5 pages, latex, 3 figures embedded in the tex

    Peierls-like transition induced by frustration in a two-dimensional antiferromagnet

    Full text link
    We show that the introduction of frustration into the spin-1/2 two-dimensional (2D) antiferromagnetic Heisenberg model on a square lattice via a next-nearest neighbor exchange interaction can lead to a Peierls-like transition, from a tetragonal to an orthorhombic phase, when the spins are coupled to adiabatic phonons. The two different orthorhombic ground states define an Ising order parameter, which is expected to lead to a finite temperature transition. Implications for Li2VOSiO4{\rm Li_2VOSiO_4}, the first realization of that model, will be discussed.Comment: 4 pages, to be published on Physical Review Letter

    Formation of clusters in the ground state of the tJt-J model on a two leg ladder

    Full text link
    We investigate the ground state properties of the tJt-J model on a two leg ladder with anisotropic couplings (t,α=J/tt,\alpha=J/t) along rungs and (t,α=J/tt',\alpha'=J'/t') along legs. We have implemented a cluster approach based on 4-site plaqettes. In the strong asymmetric cases α/α1\alpha/\alpha'\ll 1 and α/α1\alpha'/\alpha\ll 1 the ground state energy is well described by plaquette clusters with charges Q=2,4Q=2,4. The interaction between the clusters favours the condensation of plaquettes with maximal charge -- a signal for phase separation. The dominance of Q=2 plaquettes explains the emergence of tightly bound hole pairs. We have presented the numerical results of exact diagonalization to support our cluster approach.Comment: 11 pages, 9 figures, RevTex

    Optical conductivity of the Hubbard model at finite temperature

    Full text link
    The optical conductivity, σ(ω)\sigma(\omega), of the two dimensional one-band Hubbard model is calculated at finite temperature using exact diagonalization techniques on finite clusters. The in-plane d.c. resistivity, ρab\rho_{ab}, is also evaluated. We find that at large U/t and temperature T, ρab\rho_{ab} is approximately linear with temperature, in reasonable agreement with experiments on high-Tc_c superconductors. Moreover, we note that σ(ω)\sigma(\omega) displays charge excitations, a mid-infrared (MIR) band and a Drude peak, also as observed experimentally. The combination of the Drude peak and the MIR oscillator strengths leads to a conductivity that decays slower than 1/ω21/\omega^2 at energies smaller than the insulator gap near half-filling.Comment: 12 pages, 3 figures appended, Revtex version 2.0, preprin

    The susceptibility and excitation spectrum of (VO)2_2P2_2O7_7 in ladder and dimer chain models

    Full text link
    We present numerical results for the magnetic susceptibility of a Heisenberg antiferromagnetic spin ladder, as a function of temperature and the spin-spin interaction strengths JJ_\perp and JJ_{||}. These are contrasted with new bulk limit results for the dimer chain. A fit to the experimental susceptibility of the candidate spin-ladder compound vanadyl pyrophosphate, (VO)2_2P2_2O7_7, gives the parameters J=7.82J_\perp = 7.82 meV and J=7.76J_{||} = 7.76 meV. With these values we predict a singlet-triplet energy gap of Egap=3.9E_{gap} = 3.9 meV, and give a numerical estimate of the ladder triplet dispersion relation ω(k)\omega(k). In contrast, a fit to the dimer chain model leads to J1=11.11J_1=11.11 meV and J2=8.02J_2=8.02 meV, which predicts a gap of Egap=4.9E_{gap} = 4.9 meV.Comment: 16 pages, 6 figures available upon request, RevTex 3.0, preprint ORNL-CCIP-94-04 / RAL-94-02
    corecore