135 research outputs found

    TOPOLINANO & MAGCAD: A DESIGN AND SIMULATION FRAMEWORK FOR THE EXPLORATION OF EMERGING TECHNOLOGIES

    Get PDF
    We developed a design framework that enables the exploration and analysis of emerging beyond-CMOS technologies. It is composed of two powerful tools: ToPoliNano and MagCAD. Different technologies are supported, and new ones could be added thanks to their modular structure. ToPoliNano starts from a VHDL description of a circuit and performs the place&route following the technological constraints. The resulting circuit can be simulated both at logical or physical level. MagCAD is a layout editor where the user can design custom circuits, by plac-ing basic elements of the selected technology. The tool can extract a VHDL netlist based on compact models of placed elements derived from experiments or physical simulations. Circuits can be verified with standard VHDL simulators. The design workflow will be demonstrated at the U-booth to show how those tools could be a valuable help in the studying and development of emerging technologies and to obtain feedbacks from the scientific community

    FUNCODE: Effective Device-to-System Analysis of Field Coupled Nanocomputing Circuit Designs

    Get PDF
    Many beyond-CMOS technologies, based on different switching mechanisms, are arising. Field-coupled technologies are the most promising as they can guarantee an extremely low-power consumption and combine logic and memory into the same device. However, circuit-level explorations, like layout verification and analysis of the circuit performance, considering the constraints of the target technology, cannot be done using existing tools. Here, we propose a methodology to take on this challenge. We present FUNCODE (FUNction & COnnection DEtection), an algorithm that can detect element connections, functions and errors of custom-layouts and generate its corresponding VHDL netlist. It is proposed for in-plane and perpendicular Nano Magnetic Logic as a case study. FUNCODE netlists, which take into account the physical behavior of the technology, were verified using circuits with increasing complexity, from 6 up to 1400 gates with a number of layout elements varying from 200 to 2.3e6

    ToPoliNano and fiction: Design Tools for Field-coupled Nanocomputing

    Get PDF
    Field-coupled Nanocomputing (FCN) is a computing concept with several promising post-CMOS candidate implementations that offer tremendously low power dissipation and highest processing performance at the same time. Two of the manifold physical implementations are Quantum-dot Cellular Automata (QCA) and Nanomagnet Logic (NML). Both inherently come with domain-specific properties and design constraints that render established conventional design algorithms inapplicable. Accordingly, dedicated design tools for those technologies are required. This paper provides an overview of two leading examples of such tools, namely fiction and ToPoliNano. Both tools provide effective methods that cover aspects such as placement, routing, clocking, design rule checking, verification, and logical as well as physical simulation. By this, both freely available tools provide platforms for future research in the FCN domain

    Ta/CoFeB/MgO analysis for low power nanomagnetic devices

    Get PDF
    The requirement of high memory bandwidth for next-generation computing systems moved the attention to the development of devices that can combine storage and logic capabilities. Domain wall-based spintronic devices intrinsically combine both these requirements making them suitable both for non-volatile storage and computation. CoPt and CoNi were the technology drivers of perpendicular Nano Magnetic Logic devices (pNML), but for power constraints and depinning fields, novel CoFeBMgO layers appear more promis- ing. In this paper, we investigate the Ta2CoFeB1MgO2Ta3 stack at the simulation and experimental level, to show its potential for the next generation of magnetic logic devices. The micromagnetic simulations are used to support the experiments. We focus, first, at the experimental level measuring the switching field distribution of patterned magnetic islands, Ms via VSM and the domain wall speed on magnetic nanowires. Then, at the simulation level, we focus on the magnetostatic analysis of magnetic islands quantifying the stray field that can be achieved with different layout topologies. Our results show that the achieved coupling is strong enough to realize logic computation with magnetic islands, moving a step forward in the direction of low power perpendicularly magnetized logic devices

    Ultrasound imaging for the rheumatologist XXII. Achilles tendon involvement in spondyloarthritis. A multi-centre study using high frequency volumetric probe

    Get PDF
    Three-dimensional (3D) US is a new sonographic modality which represents a promising tool in the assessment of joint and periarticular tissues abnormalities in rheumatic diseases. The available literature has recently underlined its advantages mainly related to the virtual operator independence due to image acquisition of infinite 3D data sets obtained by transducer automated sweeping. Shortening of the US examination time represents another notable advantage over conventional two-dimensional (2D) US. The aim of the present study was to investigate the validity of 3D US in assessing Achilles tendon enthesitis by comparing it with 2D US. US examinations were performed by using a Logiq 9 (General Electrics Medical Systems, Milwaukee, WI) equipment with a high-frequency (8-15 MHz) volumetric probe. One hundred and eighty-six Achilles tendon enthesis of 93 SpA patients were examined. The analysis of each basic US finding demonstrated from good to excellent agreement rates between 3D and 2D US, both in dichotomous assessment of sonographic lesions and in the use of semi-quantitative grading. Excellent agreement between the two modalities was demonstrated in the assessment of both inflammatory changes and structural lesions. Our study for the first time demonstrated that 3D US is a valid imaging modality for the assessment of Achilles tendon enthesitis
    • …
    corecore