2,751 research outputs found

    A Large Mass of H_2 in the Brightest Cluster Galaxy in Zwicky 3146

    Get PDF
    We present the Spitzer/IRS mid-infrared spectrum of the infrared-luminous (L_(IR) = 4 × 10^(11) L_☉) brightest cluster galaxy (BCG) in the X-ray-luminous cluster Zwicky 3146 (Z3146; z = 0.29). The spectrum shows strong aromatic emission features, indicating that the dominant source of the infrared luminosity is star formation. The most striking feature of the spectrum, however, is the exceptionally strong molecular hydrogen (H_2) emission lines, which seem to be shock-excited. The line luminosities and inferred warm H_2 gas mass (~10^(10) M_☉) are 6 times larger than those of NGC 6240, the most H_2-luminous galaxy at z ≲ 0.05. Together with the large amount of cold H_2 detected previously (~10^(11) M_☉), this indicates that the Z3146 BCG contains disproportionately large amounts of both warm and cold H_2 gas for its infrared luminosity, which may be related to the intracluster gas cooling process in the cluster core

    Concurrent Segmentation and Localization for Tracking of Surgical Instruments

    Full text link
    Real-time instrument tracking is a crucial requirement for various computer-assisted interventions. In order to overcome problems such as specular reflections and motion blur, we propose a novel method that takes advantage of the interdependency between localization and segmentation of the surgical tool. In particular, we reformulate the 2D instrument pose estimation as heatmap regression and thereby enable a concurrent, robust and near real-time regression of both tasks via deep learning. As demonstrated by our experimental results, this modeling leads to a significantly improved performance than directly regressing the tool position and allows our method to outperform the state of the art on a Retinal Microsurgery benchmark and the MICCAI EndoVis Challenge 2015.Comment: I. Laina and N. Rieke contributed equally to this work. Accepted to MICCAI 201

    PREPARATION AND USE OF (2-BUTENE-1,4-DIYL)MAGNESIUM COMPLEXES IN ORGANIC SYNTHESS

    Get PDF
    The magnesium complexes of cyclic hydrocarbons, such as 1,2-dimethylenecycloalkanes, are readily prepared in high yields using highly reactive magnesium. Reactions of these (2-butene-1,4-diyl)magnesium reagents with electrophiles such as dibromoalkanes, alkyl ditosylates, or bromoalkylnitriles serve as a convenient method for synthesizing spirocyclic systems. Significantly, spirocarbocycles prepared by this method contain functional groups such as the exocyclic double bond or a keto group in one of the rings which could be used for further elaboration of these molecules. Furthermore, fused bicyclic systems containing a substituted five-membered ring can be conveniently prepared at high temperatures by the reactions of (2-butene-1,4- diyl)magnesium complexes with carboxylic esters and acids whereas low temperatures lead to regioselective synthesis of £8,y-unsaturated ketones

    HIGHLY REACTIVE FORMS OF ZINC AND REAGENTS THEREOF

    Get PDF
    A novel zerovalent zinc species and an organozinc reagent are disclosed. The zerovalent zinc species is directly produced by reaction of a reducing agent on a zinc salt, preferably Zn(CN)2. The organozinc reagent results from the reaction of the zerovalent zinc species and an organic compound having one or more stable anionic leaving groups. These organozinc reagents include a wide spectrum of functional groups in the organic radical, and are useful in a variety of reactions schemes

    PREPARATION AND USE OF (2-BUTENE-1,4-DIYL)MAGNESIUM COMPLEXES IN ORGANIC SYNTHESS

    Get PDF
    The magnesium complexes of cyclic hydrocarbons, such as 1,2-dimethylenecycloalkanes, are readily prepared in high yields using highly reactive magnesium. Reactions of these (2-butene-1,4-diyl)magnesium reagents with electrophiles such as dibromoalkanes, alkyl ditosylates, or bromoalkylnitriles serve as a convenient method for synthesizing spirocyclic systems. Significantly, spirocarbocycles prepared by this method contain functional groups such as the exocyclic double bond or a keto group in one of the rings which could be used for further elaboration of these molecules. Furthermore, fused bicyclic systems containing a substituted five-membered ring can be conveniently prepared at high temperatures by the reactions of (2-butene-1,4- diyl)magnesium complexes with carboxylic esters and acids whereas low temperatures lead to regioselective synthesis of £8,y-unsaturated ketones

    CROSS-COUPLING OF ORGANIC COMPOUNDS USING CUPROUS ODIDE

    Get PDF
    Cross-coupling or addition reactions of organic compounds, including acid halides, allylic halides, and C.B-unsaturated carbonyl containing compounds, with organozinc com pounds may be readily and Safely carried out in the presence of cuprous iodide. The use of this catalyst in the coupling reaction provides for the preparation of commercially useful products in the pharmaceutical, agrochemical and other industries

    PREPARATION OF FUNCTIONALIZED POLYMERS UTILIZING A SOLUBLE HIGHLY REACTIVE FORM OF CALCIUM

    Get PDF
    Calcium-substituted polymeric reagents are provided. These reagents can be prepared via the oxidative addition of a soluble highly reactive calcium species to organic and inorganic polymers containing alkyl, aryl, or alkylaryl pendent groups substituted with halide atoms, cyanide molecules, 1,3-dienes, or any conjugated poly unsaturated system. Preferably, the polymer is a cross linked p-bromopolystyrene, p-chloropolystyrene, p-fluoropolystyrene, or chloromethylated polystyrene. Preferably, the soluble highly reactive calcium species is prepared from the reduction of Ca(II) salts with an alkali metal arene, such as lithium biphenylide. These calcium-substituted polymeric reagents react with a variety of electrophiles to yield functionalized polymers. Reaction with Cu(I) salts yields calcium-sub stituted polymeric cuprate reagents, which can react, for example, with acid chlorides to form ketones, alkyl halides containing functionality, and undergo 1,4-conjugate addition with a,β-unsaturated ketones, aldehydes, esters, and amides. Bifunctionalization of the polymer can be achieved by the addition of highly reactive calcium to a functionalized polymer containing a halogen. Polymers can be cross-coupled with dyes, UV stabilizers, biologically active substrates, molecules that impart specifically desired characteristics, among other desirable functional groups
    • …
    corecore