52 research outputs found

    Russia and Information Power

    Get PDF
    On November 23, 2021, Dr. Kevin Riehle, Associate Professor at the University of Mississippi, presented on Russia and Information Power at the 2021 CASIS West Coast Security Conference. The presentation was followed by a question and answer period with questions from the audience and CASIS Vancouver executives. The key points discussed were Russia’s foreign policy goals in its information warfare campaign, as well as how Russia exploits information and wields military and diplomatic power as levers to accomplish its political and strategic goals

    Where’s Our Water? Analyzing Diplomatic History on GERD Dispute

    Get PDF
    Egypt has an extensive history in water control for the Nile river. Egypt claims the Grand Ethiopian Renaissance Dam poses a risk to their water access since the beginning of its construction in April 2011.https://egrove.olemiss.edu/hon_posters/1009/thumbnail.jp

    Fatal Clostridial necrotizing enterocolitis in a term infant with gastroschisis

    Get PDF
    AbstractNecrotizing enterocolitis (NEC) is most often a disease of preterm infants, but can develop in full term infants with gastroschisis. The latter cases typically present later and have a milder clinical course; we present the first case of fatal Clostridium perfringes-associated NEC in a full term infant with gastroschisis. Our case highlights the need for a high index of clinical suspicion for Clostridial NEC when there is rapid progression of disease and/or evidence of hemolysis. When Clostridial NEC is suspected, we recommend treatment with penicillin G and clindamycin, as well as prompt, aggressive surgical intervention

    The Human Microbiome and Recurrent Abdominal Pain in Children

    Get PDF
    This project explores the nature of the human intestinal microbiome in healthy children and children with recurrent abdominal pain. The overall goal is to obtain a robust knowledge base of the intestinal microbiome in children without evidence of pain or gastrointestinal disease and in those with recurrent abdominal pain (functional abdominal pain (FAP) and FAP associated with changes in bowel habits, i.e., irritable bowel syndrome or IBS). Specific aims include: 1. Characterize the composition of the gut microbiome in healthy children by DNA sequencing. 2. Determine the presence of disease-specific organism signatures of variable gut microbiomes in children with recurrent abdominal pain. 3. Perform functional gut metagenomics by evaluation of whole community gene expression profiles and discovery of disease-specific pathway signatures. Multiple strategies have been deployed to navigate and understand the nature of the intestinal microbiome in childhood. These strategies included 454 pyrosequencing-based strategies to sequence 16S rRNA genes and understand the detailed composition of microbes in healthy and disease groups. Microarray-based hybridization with the PhyloChip and quantitative real-time PCR (qPCR) probes were applied as complementary strategies to gain an understanding of the intestinal microbiome from various perspectives. Data collected and analyzed during the HMP UH2 Demo project, from a set of healthy and IBS children (7-12 yo) may enable the identification of core microbiomes in children, in addition to variable components that may distinguish healthy from diseased pediatric states. Twenty-two children with IBS and twenty-two healthy children were enrolled and analyzed in the UH2 phase of this study. The planned enrollment targets for the UH2/3 phases include 50 healthy children, 50 children with FAP and 50 children with IBS (minimum of 3 time points per child). We are currently analyzing the dataset for the presence of disease-specific signatures in the human microbiome, and correlating these microbial signatures with pediatric health or IBS disease status in addition to IBS subtype (e.g., diarrhea-vs constipation-predominant). In the next phase, whole genome shotgun sequencing and metatranscriptomics will be performed with a subset of children in each group. This study explores the nature of core and variable human microbiome in pre-adolescent healthy children and children with IBS. 
&#xa

    Tumor slice culture as a biologic surrogate of human cancer.

    Get PDF
    Background: The tumor microenvironment (TME) is critical to every aspect of cancer biology. Organotypic tumor slice cultures (TSCs) preserve the original TME and have demonstrated utility in predicting drug sensitivity, but the association between clinicopathologic parameters and Methods: One hundred and eight fresh tumor specimens from liver resections at a tertiary academic center were procured and precisely cut with a Vibratome to create 250 μm × 6 mm slices. These fixed-dimension TSCs were grown on polytetrafluoroethylene inserts, and their metabolic activities were determined by a colorimetric assay. Correlation between baseline activities and clinicopathologic parameters was assessed. Tissue CEA mRNA expression was determined by RNAseq. Results: By standardizing the dimensions of a slice, we found that adjacent tumor slices have equivalent metabolic activities, while those derived from different tumors exhibit \u3e30-fold range in baseline MTS absorbances, which correlated significantly with the percentage of tumor necrosis based on histologic assessment. Extending this to individual cancers, we were able to detect intra-tumoral heterogeneity over a span of a few millimeters, which reflects differences in tumor cell density and Ki-67 positivity. For colorectal cancers, tissue CEA expression based on RNAseq of tumor slices was found to correlate with clinical response to chemotherapies. Conclusions: We report a standardized method to assess and compare human cancer growth ex vivo across a wide spectrum of tumor samples. TSC reflects the state of tumor behavior and heterogeneity, thus providing a simple approach to study of human cancers with an intact TME

    Minimum information and guidelines for reporting a Multiplexed Assay of Variant Effect

    Full text link
    Multiplexed Assays of Variant Effect (MAVEs) have emerged as a powerful approach for interrogating thousands of genetic variants in a single experiment. The flexibility and widespread adoption of these techniques across diverse disciplines has led to a heterogeneous mix of data formats and descriptions, which complicates the downstream use of the resulting datasets. To address these issues and promote reproducibility and reuse of MAVE data, we define a set of minimum information standards for MAVE data and metadata and outline a controlled vocabulary aligned with established biomedical ontologies for describing these experimental designs

    Taking the Initiative? TLRP and Educational Research

    Get PDF
    Evaluating the effects of known subject traits on pediatric GI community structure and function. PCoA of the GI microbial communities of healthy children as a function of Bray-Curtis dissimilarities and 16S-based OTUs (A–D), WGS-based species (E–H), KO groups (I–L), and KEGG pathway profiles (M–P). Variation among profiles was evaluated with respect to known traits, and the percent variation captured by each axis is indicated in parenthesis. Adonis analysis results describe the significance of each trait to overall community variation. (TIF 1.58 kb

    It’s not which school but which set you’re in that matters: the influence of ability-grouping practices on student progress in mathematics

    Get PDF
    The mathematics achievement of a cohort of 955 students in 42 classes in six schools in London was followed over a four-year period, until they took their GCSEs in the summer of 2000. All six schools were regarded by Ofsted as providing a good standard of education, and all were involved in teacher-training partnerships with universities. Matched data on key stage 3 test scores and GCSE grades were available for 709 students, and these data were analysed in terms of the progress from key stage 3 test scores to GCSE grades. Although there were wide differences between schools in terms of overall GCSE grades, the average progress made by students was similar in all six schools. However, within each school, the progress made during key stage 4 varied greatly from set to set. Comparing students with the same key stage 3 scores, students placed in top sets averaged nearly half a GCSE grade higher than those in the other upper sets, who in turn averaged a third of a grade higher than those in lower sets, who in turn averaged around a third of a grade higher than those students placed in bottom sets. In the four schools that used formal whole-class teaching, the difference in GCSE grades between top and bottom sets, taking key stage 3 scores into account, ranged from just over 1 grade at GCSE to nearly 3 grades. At the schools using small-group and individualised teaching, the differences in value-added between sets were not significant. In two of the schools, a significant proportion of working class students were placed into lower sets than would be indicated by their key stage 3 test scores

    ClinGen Pathogenicity Calculator: a configurable system for assessing pathogenicity of genetic variants

    Get PDF
    Abstract Background The success of the clinical use of sequencing based tests (from single gene to genomes) depends on the accuracy and consistency of variant interpretation. Aiming to improve the interpretation process through practice guidelines, the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) have published standards and guidelines for the interpretation of sequence variants. However, manual application of the guidelines is tedious and prone to human error. Web-based tools and software systems may not only address this problem but also document reasoning and supporting evidence, thus enabling transparency of evidence-based reasoning and resolution of discordant interpretations. Results In this report, we describe the design, implementation, and initial testing of the Clinical Genome Resource (ClinGen) Pathogenicity Calculator, a configurable system and web service for the assessment of pathogenicity of Mendelian germline sequence variants. The system allows users to enter the applicable ACMG/AMP-style evidence tags for a specific allele with links to supporting data for each tag and generate guideline-based pathogenicity assessment for the allele. Through automation and comprehensive documentation of evidence codes, the system facilitates more accurate application of the ACMG/AMP guidelines, improves standardization in variant classification, and facilitates collaborative resolution of discordances. The rules of reasoning are configurable with gene-specific or disease-specific guideline variations (e.g. cardiomyopathy-specific frequency thresholds and functional assays). The software is modular, equipped with robust application program interfaces (APIs), and available under a free open source license and as a cloud-hosted web service, thus facilitating both stand-alone use and integration with existing variant curation and interpretation systems. The Pathogenicity Calculator is accessible at http://calculator.clinicalgenome.org. Conclusions By enabling evidence-based reasoning about the pathogenicity of genetic variants and by documenting supporting evidence, the Calculator contributes toward the creation of a knowledge commons and more accurate interpretation of sequence variants in research and clinical care
    • …
    corecore