704 research outputs found

    Lanthanide Spectroscopic Studies of the Dinuclear and Mg(II)-Dependent PvuII Restriction Endonuclease

    Get PDF
    Type II restriction enzymes are homodimeric systems that bind four to eight base pair palindromic recognition sequences of DNA and catalyze metal ion-dependent phosphodiester cleavage. While Mg(II) is required for cleavage in these enzymes, in some systems Ca(II) promotes avid substrate binding and sequence discrimination. These properties make them useful model systems for understanding the roles of alkaline earth metal ions in nucleic acid processing. We have previously shown that two Ca(II) ions stimulate DNA binding by PvuII endonuclease and that the trivalent lanthanide ions Tb(III) and Eu(III) support subnanomolar DNA binding in this system. Here we capitalize on this behavior, employing a unique combination of luminescence spectroscopy and DNA binding assays to characterize Ln(III) binding behavior by this enzyme. Upon excitation of tyrosine residues, the emissions of both Tb(III) and Eu(III) are enhanced severalfold. This enhancement is reduced by the addition of a large excess of Ca(II), indicating that these ions bind in the active site. Poor enhancements and affinities in the presence of the active site variant E68A indicate that Glu68 is an important Ln(III) ligand, similar to that observed with Ca(II), Mg(II), and Mn(II). At low micromolar Eu(III) concentrations in the presence of enzyme (10−20 μM), Eu(III) excitation 7F0 → 5D0 spectra yield one dominant peak at 579.2 nm. A second, smaller peak at 579.4 nm is apparent at high Eu(III) concentrations (150 μM). Titration data for both Tb(III) and Eu(III) fit well to a two-site model featuring a strong site (Kd = 1−3 μM) and a much weaker site (Kd ≈ 100−200 μM). Experiments with the E68A variant indicate that the Glu68 side chain is not required for the binding of this second Ln(III) equivalent; however, the dramatic increase in DNA binding affinity around 100 μM Ln(III) for the wild-type enzyme and metal-enhanced substrate affinity for E68A are consistent with functional relevance for this weaker site. This discrimination of sites should make it possible to use lanthanide substitution and lanthanide spectroscopy to probe individual metal ion binding sites, thus adding an important tool to the study of restriction enzyme structure and function

    Development and validation of the brief esophageal dysphagia questionnaire

    Full text link
    BackgroundEsophageal dysphagia is common in gastroenterology practice and has multiple etiologies. A complication for some patients with dysphagia is food impaction. A valid and reliable questionnaire to rapidly evaluate esophageal dysphagia and impaction symptoms can aid the gastroenterologist in gathering information to inform treatment approach and further evaluation, including endoscopy.Methods1638 patients participated over two study phases. 744 participants completed the Brief Esophageal Dysphagia Questionnaire (BEDQ) for phase 1; 869 completed the BEDQ, Visceral Sensitivity Index, Gastroesophageal Reflux Disease Questionnaire, and Hospital Anxiety and Depression Scale for phase 2. Demographic and clinical data were obtained via the electronic medical record. The BEDQ was evaluated for internal consistency, split‐half reliability, ceiling and floor effects, and construct validity.Key ResultsThe BEDQ demonstrated excellent internal consistency, reliability, and construct validity. The symptom frequency and severity scales scored above the standard acceptable cutoffs for reliability while the impaction subscale yielded poor internal consistency and split‐half reliability; thus the impaction items were deemed qualifiers only and removed from the total score. No significant ceiling or floor effects were found with the exception of 1 item, and inter‐item correlations fell within accepted ranges. Construct validity was supported by moderate yet significant correlations with other measures. The predictive ability of the BEDQ was small but significant.Conclusions & InferencesThe BEDQ represents a rapid, reliable, and valid assessment tool for esophageal dysphagia with food impaction for clinical practice that differentiates between patients with major motor dysfunction and mechanical obstruction.Validated, rapid clinical assessment tools for esophageal dysphagia are lacking. The brief esophageal dysphagia questionnaire aims to gauge the severity and frequency of dysphagia with additional items to gauge food impaction. The BEDQ is a reliable and valid tool to assess esophageal dysphagia.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/135130/1/nmo12889.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/135130/2/nmo12889_am.pd

    Moisture analysis of an extratropical cyclone

    Get PDF
    Summary in German.Includes bibliographical references (pages 297-298)

    Prevalence of Diarrhea and Enteropathogens in Racing Sled Dogs

    Get PDF
    Background: Diarrhea is highly prevalent in racing sled dogs, although the underlying causes are poorly understood. Hypothesis: Clostridium perfringens enterotoxin (CPE) and Clostridium difficile Toxin A and B are associated with diarrhea in racing sled dogs. Animals: One hundred and thirty-five sled dogs. Methods: Freshly voided feces were obtained from 55 dogs before racing and from 80 dogs after 400 miles of racing. Samples were visually scored for diarrhea, mucus, blood, and melena. CPE and C. difficile Toxin A and B were detected by ELISA. Samples were cultured for C. perfringens, C. difficile, Campylobacter, Salmonella, and Escherichia coli 0157; Giardia and Cryptosporidium spp. were detected via immunofluorescence. Results: Diarrhea occurred in 36% of dogs during racing, and hematochezia, fecal mucus or melena, or all 3 occurred in 57.5% of dogs. Salmonella was isolated from 78.2% of dogs before racing, and from 71.3% of dogs during racing. C. perfringens and C. difficile were isolated from 100 and 58.2% of dogs before racing, and from 95 and 36.3% of dogs during racing. Dogs were more likely to test positive for CPE during than before racing (18.8 versus 5.5%, P 5 .021); however, no enteropathogens or their respective toxins were significantly associated with hematochezia or diarrhea. Conclusions and Clinical Importance: Sled dogs participating in long distance racing have a high prevalence of diarrhea and hematochezia that is not associated with common enteropathogens. It is possible that diarrhea and hematochezia represent the effect of prolonged exercise on the gastrointestinal tract

    The Lantern Vol. 39, No. 2, Spring 1973

    Get PDF
    • Days of Rain • Reflections On Clifton, New Jersey • Interlude • Window Scene • Eh! • Odyssey of Malcolm • Tuna on Toast • The Second Avenue Bus • Salutation of the Dawn • So Say Something • Mood • Moriarty\u27s Lament • I\u27ve Been a Lonely Gypsy • Change • Cool Ray • The Thinker • A Southern Sunsethttps://digitalcommons.ursinus.edu/lantern/1102/thumbnail.jp

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity

    Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection

    Full text link
    [EN] We present a novel approach to 3D structural shape optimization that leans on an Immersed Boundary Method. A boundary tracking strategy based on evaluating the intersections between a fixed Cartesian grid and the evolving geometry sorts elements as internal, external and intersected. The integration procedure used by the NURBS-Enhanced Finite Element Method accurately accounts for the nonconformity between the fixed embedding discretization and the evolving structural shape, avoiding the creation of a boundary-fitted mesh for each design iteration, yielding in very efficient mesh generation process. A Cartesian hierarchical data structure improves the efficiency of the analyzes, allowing for trivial data sharing between similar entities or for an optimal reordering of thematrices for the solution of the system of equations, among other benefits. Shape optimization requires the sufficiently accurate structural analysis of a large number of different designs, presenting the computational cost for each design as a critical issue. The information required to create 3D Cartesian h- adapted mesh for new geometries is projected from previously analyzed geometries using shape sensitivity results. Then, the refinement criterion permits one to directly build h-adapted mesh on the new designs with a specified and controlled error level. Several examples are presented to show how the techniques here proposed considerably improve the computational efficiency of the optimization process.The authors wish to thank the Spanish Ministerio de Economia y Competitividad for the financial support received through the project DPI2013-46317-R and the FPI program (BES-2011-044080), and the Generalitat Valenciana through the project PROMETEO/2016/007.Marco, O.; Ródenas, J.; Albelda Vitoria, J.; Nadal, E.; Tur Valiente, M. (2017). Structural shape optimization using Cartesian grids and automatic h-adaptive mesh projection. Structural and Multidisciplinary Optimization. 1-21. https://doi.org/10.1007/s00158-017-1875-1S121MATLAB version 8.3.0.532 (R2014a) (2014) Documentation. The Mathworks, Inc., Natick, MassachusettsAbel JF, Shephard MS (1979) An algorithm for multipoint constraints in finite element analysis. Int J Numer Methods Eng 14(3):464–467Amestoy P, Davis T, Duff I (1996) An approximate minimum degree ordering algorithm. SIAM J Matrix Anal Appl 17(4):886–905Barth W, Stürzlinger W (1993) Efficient ray tracing for Bezier and B-spline surfaces. Comput Graph 17 (4):423–430Bennett J A, Botkin M E (1985) Structural shape optimization with geometric problem description and adaptive mesh refinement. AIAA J 23(3):459–464Braibant V, Fleury C (1984) Shape optimal design using b-splines. Comput Methods Appl Mech Eng 44 (3):247–267Bugeda G, Oliver J (1993) A general methodology for structural shape optimization problems using automatic adaptive remeshing. Int J Numer Methods Eng 36(18):3161–3185Bugeda G, Ródenas J J, Oñate E (2008) An integration of a low cost adaptive remeshing strategy in the solution of structural shape optimization problems using evolutionary methods. Comput Struct 86(13–14):1563–1578Chang K, Choi K K (1992) A geometry-based parameterization method for shape design of elastic solids. Mech Struct Mach 20(2):215–252Cho S, Ha S H (2009) Isogeometric shape design optimization: exact geometry and enhanced sensitivity. Struct Multidiscip Optim 38(1):53–70Belegundu D, Zhang YMS, Salagame R (1991) The natural approach for shape optimization with mesh distortion control. Tech. rep., Penn State UniversityDavis T A, Gilbert J R, Larimore S, Ng E (2004) An approximate column minimum degree ordering algorithm. ACM Trans Math Softw 30(3):353–376Doctor L J, Torborg J G (1981) Display techniques for octree-encoded objects. IEEE Comput Graph Appl 1(3):29–38Dunning P D, Kim H A, Mullineux G (2011) Investigation and improvement of sensitivity computation using the area-fraction weighted fixed grid FEM and structural optimization. Finite Elem Anal Des 47(8):933–941Düster A, Parvizian J, Yang Z, Rank E (2008) The finite cell method for three-dimensional problems of solid mechanics. Comput Methods Appl Mech Eng 197(45-48):3768–3782Escobar J M, Montenegro R, Rodríguez E, Cascón J M (2014) The meccano method for isogeometric solid modeling and applications. Eng Comput 30(3):331–343Farhat C, Lacour C, Rixen D (1998) Incorporation of linear multipoint constraints in substructure based iterative solvers. Part 1: a numerically scalable algorithm. Int J Numer Methods Eng 43(6):997–1016Fries T P, Omerović S (2016) Higher-order accurate integration of implicit geometries. Int J Numer Methods Eng 106(5):323–371Fuenmayor F J, Oliver J L (1996) Criteria to achieve nearly optimal meshes in the h-adaptive finite element mehod. Int J Numer Methods Eng 39(23):4039–4061Fuenmayor F J, Oliver J L, Ródenas J J (1997) Extension of the Zienkiewicz-Zhu error estimator to shape sensitivity analysis. Int J Numer Methods Eng 40(8):1413–1433García-Ruíz M J, Steven G P (1999) Fixed grid finite elements in elasticity problems. Eng Comput 16 (2):145–164Gill P, Murray W, Saunders M, Wright M (1984) Procedures for optimization problems with a mixture of bounds and general linear constraints. ACM Trans Math Software 10:282–298González-Estrada O A, Nadal E, Ródenas J J, Kerfriden P, Bordas S P A, Fuenmayor F J (2014) Mesh adaptivity driven by goal-oriented locally equilibrated superconvergent patch recovery. Comput Mech 53(5):957–976Ha S H, Choi K K, Cho S (2010) Numerical method for shape optimization using T-spline based isogeometric method. Struct Multidiscip Optim 42(3):417–428Haftka R T, Grandhi R V (1986) Structural shape optimization: A survey. Comput Methods Appl Mech Eng 57(1):91–106Haslinger J, Jedelsky D (1996) Genetic algorithms and fictitious domain based approaches in shape optimization. Struc Optim 12:257–264Hughes T J R, Cottrell J A, Bazilevs Y (2005) Isogeometric Analysis: CAD, Finite Elements, NURBS, Exact Geometry, and Mesh Refinement. Comput Methods Appl Mech Eng 194:4135–4195Jackins C L, Tanimoto S L (1980) Oct-tree and their use in representing three-dimensional objects. Comput Graphics Image Process 14(3):249–270Kajiya J T (1982) Ray Tracing Parametric Patches. SIGGRAPH Comput Graph 16(3):245–254van Keulen F, Haftka R T, Kim N (2005) Review of options for structural design sensitivity analysis. Part I: linear systems. Comput Methods Appl Mech Eng 194(30-33):3213–3243Kibsgaard S (1992) Sensitivity analysis-the basis for optimization. Int J Numer Methods Eng 34(3):901–932Kikuchi N, Chung K Y, Torigaki T, Taylor J E (1986) Adaptive finite element methods for shape optimization of linearly elastic structures. Comput Methods Appl Mech Eng 57(1):67–89Kim N H, Chang Y (2005) Eulerian shape design sensitivity analysis and optimization with a fixed grid. Comput Methods Appl Mech Eng 194(30–33):3291–3314Kudela L, Zander N, Kollmannsberger S, Rank E (2016) Smart octrees: Accurately integrating discontinuous functions in 3d. Comput Methods Appl Mech Eng 306(1):406–426Kunisch K, Peichl G (1996) Numerical gradients for shape optimization based on embedding domain techniques. Comput Optim 18:95–114Li K, Qian X (2011) Isogeometric analysis and shape optimization via boundary integral. Computer-Aided Design 43(11):1427–1437Lian H, Kerfriden P, Bordas S P A (2016) Implementation of regularized isogeometric boundary element methods for gradient-based shape optimization in two-dimensional linear elasticity. Int J Numer Methods Eng 106 (12):972–1017Liu L, Zhang Y, Hughes T J R, Scott M A, Sederberg T W (2014) Volumetric T-spline Construction using Boolean Operations. Eng Comput 30(4):425–439Marco O, Sevilla R, Zhang Y, Ródenas J J, Tur M (2015) Exact 3D boundary representation in finite element analysis based on Cartesian grids independent of the geometry. Int J Numer Methods Eng 103:445–468Marco O, Ródenas J J, Fuenmayor FJ, Tur M (2017a) An extension of shape sensitivity analysis to an immersed boundary method based on cartesian grids. Computational Mechanics SubmittedMarco O, Ródenas J J, Navarro-Jiménez JM, Tur M (2017b) Robust h-adaptive meshing strategy for arbitrary cad geometries in a cartesian grid framework. Computers & Structures SubmittedMeagher D (1980) Octree Encoding: A New Technique for the Representation, Manipulation and Display of Arbitrary 3-D Objects by Computer. Tech. Rep. IPL-TR-80-11 I, Rensselaer Polytechnic InstituteMoita J S, Infante J, Mota C M, Mota C A (2000) Sensitivity analysis and optimal design of geometrically non-linear laminated plates and shells. Comput Struct 76(1–3):407–420Nadal E (2014) Cartesian Grid FEM (cgFEM): High Performance h-adaptive FE Analysis with Efficient Error Control. Application to Structural Shape Optimization. PhD Thesis. Universitat Politècnica de ValènciaNadal E, Ródenas J J, Albelda J, Tur M, Tarancón J E, Fuenmayor F J (2013) Efficient finite element methodology based on cartesian grids: application to structural shape optimization. Abstr Appl Anal 2013:1–19Najafi A R, Safdari M, Tortorelli D A, Geubelle P H (2015) A gradient-based shape optimization scheme using an interface-enriched generalized FEM. Comput Methods Appl Mech Eng 296:1–17Nguyen V P, Anitescu C, Bordas S P A, Rabczuk T (2015) Isogeometric analysis: An overview and computer implementation aspects. Math Comput Simul 117:89–116Nishita T, Sederberg TW, Kakimoto M (1990) Ray Tracing Trimmed Rational Surface Patches. SIGGRAPH Comput Graph 24(4):337–345Nocedal J, Wright SJ (2006) Numerical optimization, 2nd edn. Springer-Verlag, New YorkPandey P C, Bakshi P (1999) Analytical response sensitivity computation using hybrid finite elements. Comput Struct 71(5):525–534Parvizian J, Düster A, Rank E (2007) Finite Cell Method: h- and p- Extension for Embedded Domain Methods in Solid Mechanics. Comput Mech 41(1):121–133Peskin C S (1977) Numerical Analysis of Blood Flow in the Heart. J Comput Phys 25:220–252Poldneff M J, Rai I S, Arora J S (1993) Implementation of design sensitivity analysis for nonlinear structures. AIAA J 31(11):2137–2142Powell M (1983) Variable metric methods for constrained optimization. In: Bachem A, Grotschel M, Korte B (eds) Mathematical Programming: The State of the Art, Springer, Berlin, Heidelberg, pp 288–311Qian X (2010) Full analytical sensitivities in NURBS based isogeometric shape optimization. Comput Methods Appl Mech Eng 199(29–32):2059–2071Riehl S, Steinmann P (2014) An integrated approach to shape optimization and mesh adaptivity based on material residual forces. Comput Methods Appl Mech Eng 278:640–663Riehl S, Steinmann P (2016) On structural shape optimization using an embedding domain discretization technique. Int J Numer Methods Eng 109(9):1315–1343Ródenas J J, Tarancón J E, Albelda J, Roda A, Fuenmayor F J (2005) Hierarchical Properties in Elements Obtained by Subdivision: a Hierarquical h-adaptivity Program. In: Díez P, Wiberg N E (eds) Adaptive Modeling and Simulation, p 2005Ródenas J J, Corral C, Albelda J, Mas J, Adam C (2007a) Nested domain decomposition direct and iterative solvers based on a hierarchical h-adaptive finite element code. In: Runesson K, Díez P (eds) Adaptive Modeling and Simulation 2007, Internacional Center for Numerical Methods in Engineering (CIMNE), pp 206–209Ródenas J J, Tur M, Fuenmayor F J, Vercher A (2007b) Improvement of the superconvergent patch recovery technique by the use of constraint equations: the SPR-C technique. Int J Numer Methods Eng 70(6):705–727Ródenas J J, Bugeda G, Albelda J, Oñate E (2011) On the need for the use of error-controlled finite element analyses in structural shape optimization processes. Int J Numer Methods Eng 87(11):1105–1126Schillinger D, Ruess M (2015) The finite cell method: A review in the context of higher-order structural analysis of cad and image-based geometric models. Arch Comput Meth Eng 22(3):391– 455Sevilla R, Fernández-Méndez S, Huerta A (2011a) 3D-NURBS-enhanced Finite Element Method (NEFEM). Int J Numer Methods Eng 88(2):103–125Sevilla R, Fernández-Méndez S, Huerta A (2011b) Comparison of High-order Curved Finite Elements. Int J Numer Methods Eng 87(8):719–734Sevilla R, Fernández-Méndez S, Huerta A (2011c) NURBS-enhanced Finite Element Method (NEFEM): A Seamless Bridge Between CAD and FEM. Arch Comput Meth Eng 18(4):441–484Sweeney M, Bartels R (1986) Ray tracing free-form b-spline surfaces. IEEE Comput Graph Appl 6(2):41–49Toth D L (1985) On Ray Tracing Parametric Surfaces. SIGGRAPH Comput Graph 19(3):171–179Tur M, Albelda J, Nadal E, Ródenas J J (2014) Imposing dirichlet boundary conditions in hierarchical cartesian meshes by means of stabilized lagrange multipliers. Int J Numer Methods Eng 98(6):399–417Tur M, Albelda J, Marco O, Ródenas J J (2015) Stabilized Method to Impose Dirichlet Boundary Conditions using a Smooth Stress Field. Comput Methods Appl Mech Eng 296:352–375Yao T, Choi KK (1989) 3-d shape optimal design and automatic finite element regridding. Int J Numer Methods Eng 28(2):369–384Zhang L, Gerstenberger A, Wang X, Liu W K (2004) Immersed Finite Element Method. Comput Methods Appl Mech Eng 293(21):2051–2067Zhang Y, Wang W, Hughes T J R (2013) Conformal Solid T-spline Construction from Boundary T-spline Representations. Comput Mech 6(51):1051–1059Zienkiewicz O C, Zhu J Z (1987) A Simple Error Estimator and Adaptive Procedure for Practical Engineering Analysis. Int J Numer Methods Eng 24(2):337–35
    corecore