64 research outputs found

    Substantial rearrangements, single nucleotide frameshift deletion and low diversity in mitogenome of Wolbachia‑infected strepsipteran endoparasitoid in comparison to its tephritid hosts

    Get PDF
    Insect mitogenome organisation is highly conserved, yet, some insects, especially with parasitic life cycles, have rearranged mitogenomes. Furthermore, intraspecific mitochondrial diversity can be reduced by fitness-affecting bacterial endosymbionts like Wolbachia due to their maternal coinheritance with mitochondria. We have sequenced mitogenomes of the Wolbachia-infected endoparasitoid Dipterophagus daci (Strepsiptera: Halictophagidae) and four of its 22 known tephritid fruit fly host species using total genomic extracts of parasitised flies collected across > 700 km in Australia. This halictophagid mitogenome revealed extensive rearrangements relative to the four fly mitogenomes which exhibited the ancestral insect mitogenome pattern. Compared to the only four available other strepsipteran mitogenomes, the D. daci mitogenome had additional transpositions of one rRNA and two tRNA genes, and a single nucleotide frameshift deletion in nad5 requiring translational frameshifting or, alternatively, resulting in a large protein truncation. Dipterophagus daci displays an almost completely endoparasitic life cycle when compared to Strepsiptera that have maintained the ancestral state of free-living adults. Our results support the hypothesis that the transition to extreme endoparasitism evolved together with increased levels of mitogenome changes. Furthermore, intraspecific mitogenome diversity was substantially smaller in D. daci than the parasitised flies suggesting Wolbachia reduced mitochondrial diversity because of a role in D. daci fitness

    Tephritid-microbial interactions to enhance fruit fly performance in sterile insect technique programs

    Get PDF
    Background: The Sterile Insect Technique (SIT) is being applied for the management of economically important pest fruit flies (Diptera: Tephritidae) in a number of countries worldwide. The success and cost effectiveness of SIT depends upon the ability of mass-reared sterilized male insects to successfully copulate with conspecific wild fertile females when released in the field. Methods: We conducted a critical analysis of the literature about the tephritid gut microbiome including the advancement of methods for the identification and characterization of microbiota, particularly next generation sequencing, the impacts of irradiation (to induce sterility of flies) and fruit fly rearing, and the use of probiotics to manipulate the fruit fly gut microbiota. Results: Domestication, mass-rearing, irradiation and handling, as required in SIT, may change the structure of the fruit flies’ gut microbial community compared to that of wild flies under field conditions. Gut microbiota of tephritids are important in their hosts’ development, performance and physiology. Knowledge of how mass-rearing and associated changes of the microbial community impact the functional role of the bacteria and host biology is limited. Probiotics offer potential to encourage a gut microbial community that limits pathogens, and improves the quality of fruit flies. Conclusions: Advances in technologies used to identify and characterize the gut microbiota will continue to expand our understanding of tephritid gut microbial diversity and community composition. Knowledge about the functions of gut microbes will increase through the use of gnotobiotic models, genome sequencing, metagenomics, metatranscriptomics, metabolomics and metaproteomics. The use of probiotics, or manipulation of the gut microbiota, offers significant opportunities to enhance the production of high quality, performing fruit flies in operational SIT programs

    Endosymbionts moderate constrained sex allocation in a haplodiploid thrips species in a temperature-sensitive way

    Get PDF
    Maternally inherited bacterial endosymbionts that affect host fitness are common in nature. Some endosymbionts colonise host populations by reproductive manipulations (such as cytoplasmic incompatibility; CI) that increase the reproductive fitness of infected over uninfected females. Theory predicts that CI-inducing endosymbionts in haplodiploid hosts may also influence sex allocation, including in compatible crosses, however, empirical evidence for this is scarce. We examined the role of two common CI-inducing endosymbionts, Cardinium and Wolbachia, in the sex allocation of Pezothrips kellyanus, a haplodiploid thrips species with a split sex ratio. In this species, irrespective of infection status, some mated females are constrained to produce extremely male-biased broods, whereas other females produce extremely female-biased broods. We analysed brood sex ratio of females mated with males of the same infection status at two temperatures. We found that at 20 °C the frequency of constrained sex allocation in coinfected pairs was reduced by 27% when compared to uninfected pairs. However, at 25 °C the constrained sex allocation frequency increased and became similar between coinfected and uninfected pairs, resulting in more male-biased population sex ratios at the higher temperature. This temperature-dependent pattern occurred without changes in endosymbiont densities and compatibility. Our findings indicate that endosymbionts affect sex ratios of haplodiploid hosts beyond the commonly recognised reproductive manipulations by causing female-biased sex allocation in a temperature-dependent fashion. This may contribute to a higher transmission efficiency of CI-inducing endosymbionts and is consistent with previous models that predict that CI by itself is less efficient in driving endosymbiont invasions in haplodiploid hosts

    Characterization of the bacterial communities of psyllids associated with Rutaceae in Bhutan by high throughput sequencing

    Get PDF
    Background: Several plant-pathogenic bacteria are transmitted by insect vector species that often also act as hosts. In this interface, these bacteria encounter plant endophytic, insect endosymbiotic and other microbes. Here, we used high throughput sequencing to examine the bacterial communities of five different psyllids associated with citrus and related plants of Rutaceae in Bhutan: Diaphorina citri, Diaphorina communis, Cornopsylla rotundiconis, Cacopsylla heterogena and an unidentified Cacopsylla sp. Results: The microbiomes of the psyllids largely comprised their obligate P-endosymbiont ‘Candidatus Carsonella ruddii’, and one or two S-endosymbionts that are fixed and specific to each lineage. In addition, all contained Wolbachia strains; the Bhutanese accessions of D. citri were dominated by a Wolbachia strain first found in American isolates of D. citri, while D. communis accessions were dominated by the Wolbachia strain, wDi, first detected in D. citri from China. The S-endosymbionts from the five psyllids grouped with those from other psyllid taxa; all D. citri and D. communis individuals contained sequences matching ‘Candidatus Profftella armatura’ that has previously only been reported from other Diaphorina species, and the remaining psyllid species contained OTUs related to unclassified Enterobacteriaceae. The plant pathogenic ‘Candidatus Liberibacter asiaticus’ was found in D. citri but not in D. communis. Furthermore, an unidentified ‘Candidatus Liberibacter sp.’ occurred at low abundance in both Co. rotundiconis and the unidentified Cacopsylla sp. sampled from Zanthoxylum sp.; the status of this new liberibacter as a plant pathogen and its potential plant hosts are currently unknown. The bacterial communities of Co. rotundiconis also contained a range of OTUs with similarities to bacteria previously found in samples taken from various environmental sources. Conclusions: The bacterial microbiota detected in these Bhutanese psyllids support the trends that have been seen in previous studies: psyllids have microbiomes largely comprising their obligate P-endosymbiont and one or two Sendosymbionts. In addition, the association with plant pathogens has been demonstrated, with the detection of liberibacters in a known host, D. citri, and identification of a putative new species of liberibacter in Co. rotundiconis and Cacopsylla sp

    Feminizing Wolbachia endosymbiont disrupts maternal sex chromosome inheritance in a butterfly species

    Get PDF
    Wolbachia is a maternally inherited ubiquitous endosymbiotic bacterium of arthropods that displays a diverse repertoire of host reproductive manipulations. For the first time, we demonstrate that Wolbachia manipulates sex chromosome inheritance in a sexually reproducing insect. Eurema mandarina butterfly females on Tanegashima Island, Japan, are infected with the wFem Wolbachia strain and produce all‐female offspring, while antibiotic treatment results in male offspring. Fluorescence in situ hybridization (FISH) revealed that wFem‐positive and wFem‐negative females have Z0 and WZ sex chromosome sets, respectively, demonstrating the predicted absence of the W chromosome in wFem‐infected lineages. Genomic quantitative polymerase chain reaction (qPCR) analysis showed that wFem‐positive females lay only Z0 eggs that carry a paternal Z, whereas females from lineages that are naturally wFem‐negative lay both WZ and ZZ eggs. In contrast, antibiotic treatment of adult wFem females resulted in the production of Z0 and ZZ eggs, suggesting that this Wolbachia strain can disrupt the maternal inheritance of Z chromosomes. Moreover, most male offspring produced by antibiotic‐treated wFem females had a ZZ karyotype, implying reduced survival of Z0 individuals in the absence of feminizing effects of Wolbachia. Antibiotic treatment of wFem‐infected larvae induced male‐specific splicing of the doublesex (dsx) gene transcript, causing an intersex phenotype. Thus, the absence of the female‐determining W chromosome in Z0 individuals is functionally compensated by Wolbachia‐mediated conversion of sex determination. We discuss how Wolbachia may manipulate the host chromosome inheritance and that Wolbachia may have acquired this coordinated dual mode of reproductive manipulation first by the evolution of female‐determining function and then cytoplasmically induced disruption of sex chromosome inheritance

    Insect threats to food security

    No full text
    Globally, one out of nine people suffers from chronic hunger, and undernourishment is growing (1). Global average surface temperatures are also rising and are projected to increase by 2° to 5°C this century, with negative impacts on agricultural production. Even today, despite substantial plant protection efforts, about one-third of crops are lost to insect pests, pathogens, and weeds. How will climate warming affect these crop losses on a global scale? On page 916 of this issue, Deutsch et al. (2) evaluate the impact of rising average surface temperatures on yield losses due to insects in wheat, maize, and rice, which are staple foods for billions of people. The results show that insects will cause significantly increased grain loss across many regions of a warmer world

    Genome analyses of four Wolbachia strains and associated mitochondria of Rhagoletis cerasi expose cumulative modularity of cytoplasmic incompatibility factors and cytoplasmic hitchhiking across host populations

    Get PDF
    Background: The endosymbiont Wolbachia can manipulate arthropod reproduction and invade host populations by inducing cytoplasmic incompatibility (CI). Some host species are coinfected with multiple Wolbachia strains which may have sequentially invaded host populations by expressing different types of modular CI factor (cif) genes. The tephritid fruit fly Rhagoletis cerasi is a model for CI and Wolbachia population dynamics. It is associated with at least four Wolbachia strains in various combinations, with demonstrated (wCer2, wCer4), predicted (wCer1) or unknown (wCer5) CI phenotypes. Results: We sequenced and assembled the draft genomes of the Wolbachia strains wCer1, wCer4 and wCer5, and compared these with the previously sequenced genome of wCer2 which currently invades R. cerasi populations. We found complete cif gene pairs in all strains: four pairs in wCer2 (three Type I; one Type V), two pairs in wCer1 (both Type I) and wCer4 (one Type I; one Type V), and one pair in wCer5 (Type IV). Wolbachia genome variant analyses across geographically and genetically distant host populations revealed the largest diversity of single nucleotide polymorphisms (SNPs) in wCer5, followed by wCer1 and then wCer2, indicative of their different lengths of host associations. Furthermore, mitogenome analyses of the Wolbachia genome-sequenced individuals in combination with SNP data from six European countries revealed polymorphic mitogenome sites that displayed reduced diversity in individuals infected with wCer2 compared to those without. Conclusions: Coinfections with Wolbachia are common in arthropods and affect options for Wolbachia-based management strategies of pest and vector species already infected by Wolbachia. Our analyses of Wolbachia genomes of a host naturally coinfected by several strains unravelled signatures of the evolutionary dynamics in both Wolbachia and host mitochondrial genomes as a consequence of repeated invasions. Invasion of already infected populations by new Wolbachia strains requires new sets of functionally different cif genes and thereby may select for a cumulative modularity of cif gene diversity in invading strains. Furthermore, we demonstrated at the mitogenomic scale that repeated CI-driven Wolbachia invasions of hosts result in reduced mitochondrial diversity and hitchhiking effects. Already resident Wolbachia strains may experience similar cytoplasmic hitchhiking effects caused by the invading Wolbachia strain

    Root damage by insects reverses the effects of elevated atmospheric CO2 on eucalypt seedlings

    Get PDF
    Predicted increases in atmospheric carbon dioxide (CO2) are widely anticipated to increase biomass accumulation by accelerating rates of photosynthesis in many plant taxa. Little, however, is known about how soil-borne plant antagonists might modify the effects of elevated CO2 (eCO2), with root-feeding insects being particularly understudied. Root damage by insects often reduces rates of photosynthesis by disrupting root function and imposing water deficits. These insects therefore have considerable potential for modifying plant responses to eCO2. We investigated how root damage by a soil-dwelling insect (Xylotrupes gideon australicus) modified the responses of Eucalyptus globulus to eCO2. eCO2 increased plant height when E. globulus were 14 weeks old and continued to do so at an accelerated rate compared to those grown at ambient CO2 (aCO2). Plants exposed to root-damaging insects showed a rapid decline in growth rates thereafter. In eCO2, shoot and root biomass increased by 46 and 35%, respectively, in insect-free plants but these effects were arrested when soil-dwelling insects were present so that plants were the same size as those grown at aCO2. Specific leaf mass increased by 29% under eCO2, but at eCO2 root damage caused it to decline by 16%, similar to values seen in plants at aCO2 without root damage. Leaf C:N ratio increased by >30% at eCO2 as a consequence of declining leaf N concentrations, but this change was also moderated by soil insects. Soil insects also reduced leaf water content by 9% at eCO2, which potentially arose through impaired water uptake by the roots. We hypothesise that this may have impaired photosynthetic activity to the extent that observed plant responses to eCO2 no longer occurred. In conclusion, soil-dwelling insects could modify plant responses to eCO2 predicted by climate change plant growth models
    • 

    corecore