21 research outputs found

    MicroRNA expression profile identifies high grade, non-muscle-invasive bladder tumors at elevated risk to progress to an invasive phenotype

    Get PDF
    Abstract: The objective of this study was to identify a panel of microRNAs (miRNAs) differentially expressed in high-grade non-muscle invasive (NMI; TaG3–T1G3) urothelial carcinoma that progress to muscle-invasive disease compared to those that remain non-muscle invasive, whether recurrence happens or not. Eighty-nine high-grade NMI urothelial carcinoma lesions were identified and total RNA was extracted from paraffin-embedded tissue. Patients were categorized as either having a non-muscle invasive lesion with no evidence of progression over a 3-year period or as having a similar lesion showing progression to muscle invasion over the same period. In addition, comparison of miRNA expression levels between patients with and without prior intravesical therapy was performed. Total RNA was pooled for microarray analysis in each group (non-progressors and progressors), and qRT-PCR of individual samples validated differential expression between non-progressive and progressive lesions. MiR-32-5p, -224-5p, and -412-3p were associated with cancer-specific survival. Downregulation of miR-203a-3p and miR-205-5p were significantly linked to progression in non-muscle invasive bladder tumors. These miRNAs include those implicated in epithelial mesenchymal transition, previously identified as members of a panel characterizing transition from the non-invasive to invasive phenotype in bladder tumors. Furthermore, we were able to identify specific miRNAs that are linked to postoperative outcome in patients with high grade NMI urothelial carcinoma of the bladder (UCB) that progressed to muscle-invasive (MI) disease

    Integrated genomic characterization of pancreatic ductal adenocarcinoma

    Get PDF
    We performed integrated genomic, transcriptomic, and proteomic profiling of 150 pancreatic ductal adenocarcinoma (PDAC) specimens, including samples with characteristic low neoplastic cellularity. Deep whole-exome sequencing revealed recurrent somatic mutations in KRAS, TP53, CDKN2A, SMAD4, RNF43, ARID1A, TGFβR2, GNAS, RREB1, and PBRM1. KRAS wild-type tumors harbored alterations in other oncogenic drivers, including GNAS, BRAF, CTNNB1, and additional RAS pathway genes. A subset of tumors harbored multiple KRAS mutations, with some showing evidence of biallelic mutations. Protein profiling identified a favorable prognosis subset with low epithelial-mesenchymal transition and high MTOR pathway scores. Associations of non-coding RNAs with tumor-specific mRNA subtypes were also identified. Our integrated multi-platform analysis reveals a complex molecular landscape of PDAC and provides a roadmap for precision medicine

    MiRNA-424-5p Suppresses Proliferation, Migration, and Invasion of Clear Cell Renal Cell Carcinoma and Attenuates Expression of O-GlcNAc-Transferase

    No full text
    MicroRNAs (miRNAs) are non-coding post-transcriptional regulators of gene expression that are dysregulated in clear cell renal cell carcinoma (ccRCC) and play an important role in tumor progression. Our prior work identified a subset of miRNAs in pT1 ccRCC tumors, including miR-424-5p, that are associated with an aggressive phenotype. We investigate the impact of this dysregulated miRNA and its protein target O-GlcNAc-transferase (OGT) to better understand the mechanisms behind aggressive stage I ccRCC. The ccRCC cell lines 786-O and Caki-1 were used to assess the impact of miR-424-5p and OGT. Cells were transfected with pre-miR-424-5p, a lentiviral anti-OGT shRNA, or were treated with the demethylating agent 5-Aza-2′-deoxycytidine. Cell proliferation was measured via MT cell viability assay. Cell migration and invasion were analyzed using Transwell assays. The expression of miR-424-5p was determined through qRT-PCR, while OGT protein expression was evaluated through Western blotting. The interaction between miR-424-5p and OGT was confirmed via luciferase reporter assay. The transfection of ccRCC cells with pre-miR-424-5p or anti-OGT shRNA significantly inhibited cell proliferation, migration, and OGT expression, while miR-424-5p also attenuated cell invasion. Addition of the demethylating agent significantly reduced cell proliferation, migration, invasion, and OGT expression, while significantly increasing the expression of miR-424-5p. Altogether, these findings suggest that epigenetic downregulation of miR-424-5p, which in turn augments OGT expression, contributes to the creation of aggressive forms of stage I ccRCC

    Spatiotemporal expression profiling of proteins in rat sciatic nerve regeneration using reverse phase protein arrays

    No full text
    Abstract Background Protein expression profiles throughout 28 days of peripheral nerve regeneration were characterized using an established rat sciatic nerve transection injury model. Reverse phase protein microarrays were used to identify the spatial and temporal expression profile of multiple proteins implicated in peripheral nerve regeneration including growth factors, extracellular matrix proteins, and proteins involved in adhesion and migration. This high-throughput approach enabled the simultaneous analysis of 3,360 samples on a nitrocellulose-coated slide. Results The extracellular matrix proteins collagen I and III, laminin gamma-1, fibronectin, nidogen and versican displayed an early increase in protein levels in the guide and proximal sections of the regenerating nerve with levels at or above the baseline expression of intact nerve by the end of the 28 day experimental course. The 28 day protein levels were also at or above baseline in the distal segment however an early increase was only noted for laminin, nidogen, and fibronectin. While the level of epidermal growth factor, ciliary neurotrophic factor and fibroblast growth factor-1 and -2 increased throughout the experimental course in the proximal and distal segments, nerve growth factor only increased in the distal segment and fibroblast growth factor-1 and -2 and nerve growth factor were the only proteins in that group to show an early increase in the guide contents. As expected, several proteins involved in cell adhesion and motility; namely focal adhesion kinase, N-cadherin and β-catenin increased earlier in the proximal and distal segments than in the guide contents reflecting the relatively acellular matrix of the early regenerate. Conclusions In this study we identified changes in expression of multiple proteins over time linked to regeneration of the rat sciatic nerve both demonstrating the utility of reverse phase protein arrays in nerve regeneration research and revealing a detailed, composite spatiotemporal expression profile of peripheral nerve regeneration.</p

    MicroRNA expression profile identifies high grade, non-muscle-invasive bladder tumors at elevated risk to progress to an invasive phenotype

    Get PDF
    Abstract: The objective of this study was to identify a panel of microRNAs (miRNAs) differentially expressed in high-grade non-muscle invasive (NMI; TaG3–T1G3) urothelial carcinoma that progress to muscle-invasive disease compared to those that remain non-muscle invasive, whether recurrence happens or not. Eighty-nine high-grade NMI urothelial carcinoma lesions were identified and total RNA was extracted from paraffin-embedded tissue. Patients were categorized as either having a non-muscle invasive lesion with no evidence of progression over a 3-year period or as having a similar lesion showing progression to muscle invasion over the same period. In addition, comparison of miRNA expression levels between patients with and without prior intravesical therapy was performed. Total RNA was pooled for microarray analysis in each group (non-progressors and progressors), and qRT-PCR of individual samples validated differential expression between non-progressive and progressive lesions. MiR-32-5p, -224-5p, and -412-3p were associated with cancer-specific survival. Downregulation of miR-203a-3p and miR-205-5p were significantly linked to progression in non-muscle invasive bladder tumors. These miRNAs include those implicated in epithelial mesenchymal transition, previously identified as members of a panel characterizing transition from the non-invasive to invasive phenotype in bladder tumors. Furthermore, we were able to identify specific miRNAs that are linked to postoperative outcome in patients with high grade NMI urothelial carcinoma of the bladder (UCB) that progressed to muscle-invasive (MI) disease

    Vascular invasion predicts the subgroup of lung adenocarcinomas ≤2.0 cm at risk of poor outcome treated by wedge resection compared to lobectomyCentral MessagePerspective

    No full text
    Background: Recent randomized control trials (JCOG0802 and CALGB140503) have shown sublobar resection to be noninferior to lobectomy for non–small cell lung cancer (NSCLC) ≤2.0 cm. We have previously proposed histologic criteria stratifying lung adenocarcinoma into indolent low malignant potential (LMP) and aggressive angioinvasive adenocarcinomas, resulting in better prognostication than provided by World Health Organization grade. Here we determine whether pathologic classification is reproducible and whether subsets of adenocarcinomas predict worse outcomes when treated by wedge resection compared to lobectomy. Methods: A retrospective cohort of 108 recipients of wedge resection and 187 recipients of lobectomy for stage I/0 lung adenocarcinomas ≤2.0 cm was assembled from 2 institutions. All tumors were classified by a single pathologist, and interobserver reproducibility was assessed in a subset (n = 92) by 5 pathologists. Results: Angioinvasive adenocarcinoma (21%-27% of cases) was associated with worse outcomes when treated with wedge resection compared to lobectomy (5-year recurrence-free survival, 57% vs 85% [P = .007]; 5-year disease-free survival [DSS], 70% vs 90% [P = .043]; 7-year overall survival, 37% vs 58% [P = .143]). Adenocarcinoma in situ (AIS), minimally invasive adenocarcinoma (MIA), and LMP exhibited 100% 5-year DSS regardless of the surgical approach. Multivariable analysis showed that angioinvasion, tumor size, margin status, and extent of nodal sampling were significantly associated with recurrence but not with surgical procedure. There was substantial interobserver reproducibility among the pathologists for the diagnosis of angioinvasive adenocarcinoma (κ = 0.71) and the combined indolent AIS/MIA/LMP group (κ = 0.74). Conclusions: The majority (∼75%) of lung adenocarcinomas ≤2 cm are adequately managed with wedge resection; however, angioinvasive adenocarcinomas (∼25%) treated by wedge resection with suboptimal nodal sampling exhibit poor outcomes, with a 40% to 45% rate of recurrence within 5 years and 60% to 65% overall mortality at 7 years
    corecore