8,798 research outputs found
Griffiths-McCoy singularities in the transverse field Ising model on the randomly diluted square lattice
The site-diluted transverse field Ising model in two dimensions is studied
with Quantum-Monte-Carlo simulations. Its phase diagram is determined in the
transverse field (Gamma) and temperature (T) plane for various (fixed)
concentrations (p). The nature of the quantum Griffiths phase at zero
temperature is investigated by calculating the distribution of the local
zero-frequency susceptibility. It is pointed out that the nature of the
Griffiths phase is different for small and large Gamma.Comment: 21 LaTeX (JPSJ macros included), 12 eps-figures include
Finite Size Scaling Analysis of Exact Ground States for +/-J Spin Glass Models in Two Dimensions
With the help of EXACT ground states obtained by a polynomial algorithm we
compute the domain wall energy at zero-temperature for the bond-random and the
site-random Ising spin glass model in two dimensions. We find that in both
models the stability of the ferromagnetic AND the spin glass order ceases to
exist at a UNIQUE concentration p_c for the ferromagnetic bonds. In the
vicinity of this critical point, the size and concentration dependency of the
first AND second moment of the domain wall energy are, for both models,
described by a COMMON finite size scaling form. Moreover, below this
concentration the stiffness exponent turns out to be slightly negative \theta_S
= -0.056(6) indicating the absence of any intermediate spin glass phase at
non-zero temperature.Comment: 7 pages Latex, 5 postscript-figures include
Influence of Charge and Energy Imbalances on the Tunneling Current through a Superconductor-Normal Metal Junction
We consider quasiparticle charge and energy imbalances in a thin
superconductor weakly coupled with two normal-metal electrodes via tunnel
junctions at low temperatures. Charge and energy imbalances, which can be
created by injecting quasiparticles at one junction, induce excess tunneling
current at the other junction. We numerically obtain
as a function of the bias voltage across the detection junction.
We show that at the zero bias voltage is purely determined by the
charge imbalance, while the energy imbalance causes a nontrivial -dependence of . The obtained voltage-current characteristics
qualitatively agree with the experimental result by R. Yagi [Phys. Rev. B {\bf
73} (2006) 134507].Comment: 10 pages, 5 figure
Study of the Blending Efficiency of Pitched Blade Impellers
This paper presents an analysis of the blending efficiency of pitched blade impellers under a turbulent regime of flow of an agitated low viscous liquid. The conductivity method is used to determine of the blending (homogenization) time of miscible liquids in pilot plant mixing equipment with standard radial baffles. For the given homogeneity degree (98 %) a three-blade pitched blade impeller is tested with various off-bottom clearances, vessel/ impeller diameter ratios and various impeller pitch angles. The experimental results show in accordance with theoretical data from the literature, that the greatest effect on the dimensionless blending time is exhibited by the vessel/ impeller diameter ratio and the impeller pitch angle. The number of total circulations necessary for reaching the chosen homogeneity degree depends on the impeller pitch angle and amounts more than three. Finally, the energetic efficiency of the blending process is calculated. The results of this study show, that the highest energetic efficiency of the three-blade pitched blade impeller appears for the pitch angle a = 24°, the impeller/vessel diameter ratio T/D = 2 and the impeller off-bottom clearance h/D = 1
Numerical study of a short-range p-spin glass model in three dimensions
In this work we study numerically a short range p-spin glass model in three
dimensions. The behaviour of the model appears to be remarkably different from
mean field predictions. In fact it shares some features typical of models with
full replica-symmetry breaking (FRSB). Nevertheless, we believe that the
transition that we study is intrinsically different from the FRSB and basically
due to non-perturbative contributions. We study both the statics and the
dynamics of the system which seem to confirm our conjectures.Comment: 20 pages, 15 figure
Probing the central black hole in M87 with gamma-rays
Recent high-sensitivity observation of the nearby radio galaxy M87 have
provided important insights into the central engine that drives the large-scale
outflows seen in radio, optical and X-rays. This review summarizes the
observational status achieved in the high energy (HE;<100 GeV) and very high
energy (VHE; >100 GeV) gamma-ray domains, and discusses the theoretical
progress in understanding the physical origin of this emission and its relation
to the activity of the central black hole.Comment: Invited compact review to be published in Modern Physics Letters A;
19 pages, 4 figure
Computational Complexity of Determining the Barriers to Interface Motion in Random Systems
The low-temperature driven or thermally activated motion of several condensed
matter systems is often modeled by the dynamics of interfaces (co-dimension-1
elastic manifolds) subject to a random potential. Two characteristic
quantitative features of the energy landscape of such a many-degree-of-freedom
system are the ground-state energy and the magnitude of the energy barriers
between given configurations. While the numerical determination of the former
can be accomplished in time polynomial in the system size, it is shown here
that the problem of determining the latter quantity is NP-complete. Exact
computation of barriers is therefore (almost certainly) much more difficult
than determining the exact ground states of interfaces.Comment: 8 pages, figures included, to appear in Phys. Rev.
Random quantum magnets with long-range correlated disorder: Enhancement of critical and Griffiths-McCoy singularities
We study the effect of spatial correlations in the quenched disorder on
random quantum magnets at and near a quantum critical point. In the random
transverse field Ising systems disorder correlations that decay algebraically
with an exponent rho change the universality class of the transition for small
enough rho and the off-critical Griffiths-McCoy singularities are enhanced. We
present exact results for 1d utilizing a mapping to fractional Brownian motion
and generalize the predictions for the critical exponents and the generalized
dynamical exponent in the Griffiths phase to d>=2.Comment: 4 pages RevTeX, 1 eps-figure include
Ground state properties of fluxlines in a disordered environment
A new numerical method to calculate exact ground states of multi-fluxline
systems with quenched disorder is presented, which is based on the minimum cost
flow algorithm from combinatorial optimization. We discuss several models that
can be studied with this method including their specific implementations,
physically relevant observables and results: 1) the N-line model with N
fluxlines (or directed polymers) in a d-dimensional environment with point
and/or columnar disorder and hard or soft core repulsion; 2) the vortex glass
model for a disordered superconductor in the strong screening limit and 3) the
Sine-Gordon model with random pase shifts in the strong coupling limit.Comment: 4 pages RevTeX, 3 eps-figures include
Effects of dissipation on disordered quantum spin models
We study the effects of the coupling to an Ohmic quantum reservoir on the
static and dynamical properties of a family of disordered SU(2) spin models in
a transverse magnetic field using a method of direct spin summation. The
tendency to form a glassy phase increases with the strength of the coupling of
the system to the environment. We study the influence of the environment on the
features of the phase diagram of the various models as well as the stability of
the possible phases.Comment: 24 pages, 8 fig
- …