8,798 research outputs found

    Griffiths-McCoy singularities in the transverse field Ising model on the randomly diluted square lattice

    Full text link
    The site-diluted transverse field Ising model in two dimensions is studied with Quantum-Monte-Carlo simulations. Its phase diagram is determined in the transverse field (Gamma) and temperature (T) plane for various (fixed) concentrations (p). The nature of the quantum Griffiths phase at zero temperature is investigated by calculating the distribution of the local zero-frequency susceptibility. It is pointed out that the nature of the Griffiths phase is different for small and large Gamma.Comment: 21 LaTeX (JPSJ macros included), 12 eps-figures include

    Finite Size Scaling Analysis of Exact Ground States for +/-J Spin Glass Models in Two Dimensions

    Full text link
    With the help of EXACT ground states obtained by a polynomial algorithm we compute the domain wall energy at zero-temperature for the bond-random and the site-random Ising spin glass model in two dimensions. We find that in both models the stability of the ferromagnetic AND the spin glass order ceases to exist at a UNIQUE concentration p_c for the ferromagnetic bonds. In the vicinity of this critical point, the size and concentration dependency of the first AND second moment of the domain wall energy are, for both models, described by a COMMON finite size scaling form. Moreover, below this concentration the stiffness exponent turns out to be slightly negative \theta_S = -0.056(6) indicating the absence of any intermediate spin glass phase at non-zero temperature.Comment: 7 pages Latex, 5 postscript-figures include

    Influence of Charge and Energy Imbalances on the Tunneling Current through a Superconductor-Normal Metal Junction

    Full text link
    We consider quasiparticle charge and energy imbalances in a thin superconductor weakly coupled with two normal-metal electrodes via tunnel junctions at low temperatures. Charge and energy imbalances, which can be created by injecting quasiparticles at one junction, induce excess tunneling current IexI_{\rm ex} at the other junction. We numerically obtain IexI_{\rm ex} as a function of the bias voltage VdetV_{\rm det} across the detection junction. We show that IexI_{\rm ex} at the zero bias voltage is purely determined by the charge imbalance, while the energy imbalance causes a nontrivial VdetV_{\rm det}-dependence of IexI_{\rm ex}. The obtained voltage-current characteristics qualitatively agree with the experimental result by R. Yagi [Phys. Rev. B {\bf 73} (2006) 134507].Comment: 10 pages, 5 figure

    Study of the Blending Efficiency of Pitched Blade Impellers

    Get PDF
    This paper presents an analysis of the blending efficiency of pitched blade impellers under a turbulent regime of flow of an agitated low viscous liquid. The conductivity method is used to determine of the blending (homogenization) time of miscible liquids in pilot plant mixing equipment with standard radial baffles. For the given homogeneity degree (98 %) a three-blade pitched blade impeller is tested with various off-bottom clearances, vessel/ impeller diameter ratios and various impeller pitch angles. The experimental results show in accordance with theoretical data from the literature, that the greatest effect on the dimensionless blending time is exhibited by the vessel/ impeller diameter ratio and the impeller pitch angle. The number of total circulations necessary for reaching the chosen homogeneity degree depends on the impeller pitch angle and amounts more than three. Finally, the energetic efficiency of the blending process is calculated. The results of this study show, that the highest energetic efficiency of the three-blade pitched blade impeller appears for the pitch angle a = 24°, the impeller/vessel diameter ratio T/D = 2 and the impeller off-bottom clearance h/D = 1

    Numerical study of a short-range p-spin glass model in three dimensions

    Full text link
    In this work we study numerically a short range p-spin glass model in three dimensions. The behaviour of the model appears to be remarkably different from mean field predictions. In fact it shares some features typical of models with full replica-symmetry breaking (FRSB). Nevertheless, we believe that the transition that we study is intrinsically different from the FRSB and basically due to non-perturbative contributions. We study both the statics and the dynamics of the system which seem to confirm our conjectures.Comment: 20 pages, 15 figure

    Probing the central black hole in M87 with gamma-rays

    Full text link
    Recent high-sensitivity observation of the nearby radio galaxy M87 have provided important insights into the central engine that drives the large-scale outflows seen in radio, optical and X-rays. This review summarizes the observational status achieved in the high energy (HE;<100 GeV) and very high energy (VHE; >100 GeV) gamma-ray domains, and discusses the theoretical progress in understanding the physical origin of this emission and its relation to the activity of the central black hole.Comment: Invited compact review to be published in Modern Physics Letters A; 19 pages, 4 figure

    Computational Complexity of Determining the Barriers to Interface Motion in Random Systems

    Get PDF
    The low-temperature driven or thermally activated motion of several condensed matter systems is often modeled by the dynamics of interfaces (co-dimension-1 elastic manifolds) subject to a random potential. Two characteristic quantitative features of the energy landscape of such a many-degree-of-freedom system are the ground-state energy and the magnitude of the energy barriers between given configurations. While the numerical determination of the former can be accomplished in time polynomial in the system size, it is shown here that the problem of determining the latter quantity is NP-complete. Exact computation of barriers is therefore (almost certainly) much more difficult than determining the exact ground states of interfaces.Comment: 8 pages, figures included, to appear in Phys. Rev.

    Random quantum magnets with long-range correlated disorder: Enhancement of critical and Griffiths-McCoy singularities

    Full text link
    We study the effect of spatial correlations in the quenched disorder on random quantum magnets at and near a quantum critical point. In the random transverse field Ising systems disorder correlations that decay algebraically with an exponent rho change the universality class of the transition for small enough rho and the off-critical Griffiths-McCoy singularities are enhanced. We present exact results for 1d utilizing a mapping to fractional Brownian motion and generalize the predictions for the critical exponents and the generalized dynamical exponent in the Griffiths phase to d>=2.Comment: 4 pages RevTeX, 1 eps-figure include

    Ground state properties of fluxlines in a disordered environment

    Full text link
    A new numerical method to calculate exact ground states of multi-fluxline systems with quenched disorder is presented, which is based on the minimum cost flow algorithm from combinatorial optimization. We discuss several models that can be studied with this method including their specific implementations, physically relevant observables and results: 1) the N-line model with N fluxlines (or directed polymers) in a d-dimensional environment with point and/or columnar disorder and hard or soft core repulsion; 2) the vortex glass model for a disordered superconductor in the strong screening limit and 3) the Sine-Gordon model with random pase shifts in the strong coupling limit.Comment: 4 pages RevTeX, 3 eps-figures include

    Effects of dissipation on disordered quantum spin models

    Full text link
    We study the effects of the coupling to an Ohmic quantum reservoir on the static and dynamical properties of a family of disordered SU(2) spin models in a transverse magnetic field using a method of direct spin summation. The tendency to form a glassy phase increases with the strength of the coupling of the system to the environment. We study the influence of the environment on the features of the phase diagram of the various models as well as the stability of the possible phases.Comment: 24 pages, 8 fig
    • …
    corecore