129 research outputs found

    ILP Modulo Data

    Get PDF
    The vast quantity of data generated and captured every day has led to a pressing need for tools and processes to organize, analyze and interrelate this data. Automated reasoning and optimization tools with inherent support for data could enable advancements in a variety of contexts, from data-backed decision making to data-intensive scientific research. To this end, we introduce a decidable logic aimed at database analysis. Our logic extends quantifier-free Linear Integer Arithmetic with operators from Relational Algebra, like selection and cross product. We provide a scalable decision procedure that is based on the BC(T) architecture for ILP Modulo Theories. Our decision procedure makes use of database techniques. We also experimentally evaluate our approach, and discuss potential applications.Comment: FMCAD 2014 final version plus proof

    Novel waste printed circuit board recycling process with molten salt

    Get PDF
    The objective of the method was to prove the concept of a novel waste PCBs recycling process which uses inert, stable molten salts as the direct heat transfer fluid and, simultaneously, uses this molten salt to separate the metal products in either liquid (solder, zinc, tin, lead, etc.) or solid (copper, gold, steel, palladium, etc.) form at the operating temperatures of 450–470 °C. The PCB recovery reactor is essentially a U-shaped reactor with the molten salt providing a continuous fluid, allowing molten salt access from different depths for metal recovery. A laboratory scale batch reactor was constructed using 316L as suitable construction material. For safety reasons, the inert, stable LiCl–KCl molten salts were used as direct heat transfer fluid. Recovered materials were washed with hot water to remove residual salt before metal recovery assessment. The impact of this work was to show metal separation using molten salts in one single unit, by using this novel reactor methodology. The reactor is a U-shaped reactor filled with a continuous liquid with a sloped bottom representing a novel reactor concept. This method uses large PCB pieces instead of shredded PCBs as the reactor volume is 2.2 L. The treated PCBs can be removed via leg B while the process is on-going

    Any-k: Anytime Top-k Tree Pattern Retrieval in Labeled Graphs

    Full text link
    Many problems in areas as diverse as recommendation systems, social network analysis, semantic search, and distributed root cause analysis can be modeled as pattern search on labeled graphs (also called "heterogeneous information networks" or HINs). Given a large graph and a query pattern with node and edge label constraints, a fundamental challenge is to nd the top-k matches ac- cording to a ranking function over edge and node weights. For users, it is di cult to select value k . We therefore propose the novel notion of an any-k ranking algorithm: for a given time budget, re- turn as many of the top-ranked results as possible. Then, given additional time, produce the next lower-ranked results quickly as well. It can be stopped anytime, but may have to continues until all results are returned. This paper focuses on acyclic patterns over arbitrary labeled graphs. We are interested in practical algorithms that effectively exploit (1) properties of heterogeneous networks, in particular selective constraints on labels, and (2) that the users often explore only a fraction of the top-ranked results. Our solution, KARPET, carefully integrates aggressive pruning that leverages the acyclic nature of the query, and incremental guided search. It enables us to prove strong non-trivial time and space guarantees, which is generally considered very hard for this type of graph search problem. Through experimental studies we show that KARPET achieves running times in the order of milliseconds for tree patterns on large networks with millions of nodes and edges.Comment: To appear in WWW 201

    Comparison of deterministic, stochastic and fuzzy logic uncertainty modelling for capacity extension projects of DI/WFI pharmaceutical plant utilities with variable/dynamic demand

    Get PDF
    The last 30 years have seen Fuzzy Logic (FL) emerging as a method either complementing or challenging stochastic methods as the traditional method of modelling uncertainty. But the circumstances under which FL or stochastic methods should be used are shrouded in disagreement, because the areas of application of statistical and FL methods are overlapping with differences in opinion as to when which method should be used. Lacking are practically relevant case studies comparing these two methods. This work compares stochastic and FL methods for the assessment of spare capacity on the example of pharmaceutical high purity water (HPW) utility systems. The goal of this study was to find the most appropriate method modelling uncertainty in industrial scale HPW systems. The results provide evidence which suggests that stochastic methods are superior to the methods of FL in simulating uncertainty in chemical plant utilities including HPW systems in typical cases whereby extreme events, for example peaks in demand, or day-to-day variation rather than average values are of interest. The average production output or other statistical measures may, for instance, be of interest in the assessment of workshops. Furthermore the results indicate that the stochastic model should be used only if found necessary by a deterministic simulation. Consequently, this thesis concludes that either deterministic or stochastic methods should be used to simulate uncertainty in chemical plant utility systems and by extension some process system because extreme events or the modelling of day-to-day variation are important in capacity extension projects. Other reasons supporting the suggestion that stochastic HPW models are preferred to FL HPW models include: 1. The computer code for stochastic models is typically less complex than a FL models, thus reducing code maintenance and validation issues. 2. In many respects FL models are similar to deterministic models. Thus the need for a FL model over a deterministic model is questionable in the case of industrial scale HPW systems as presented here (as well as other similar systems) since the latter requires simpler models. 3. A FL model may be difficult to "sell" to an end-user as its results represent "approximate reasoning" a definition of which is, however, lacking. 4. Stochastic models may be applied with some relatively minor modifications on other systems, whereas FL models may not. For instance, the stochastic HPW system could be used to model municipal drinking water systems, whereas the FL HPW model should or could not be used on such systems. This is because the FL and stochastic model philosophies of a HPW system are fundamentally different. The stochastic model sees schedule and volume uncertainties as random phenomena described by statistical distributions based on either estimated or historical data. The FL model, on the other hand, simulates schedule uncertainties based on estimated operator behaviour e.g. tiredness of the operators and their working schedule. But in a municipal drinking water distribution system the notion of "operator" breaks down. 5. Stochastic methods can account for uncertainties that are difficult to model with FL. The FL HPW system model does not account for dispensed volume uncertainty, as there appears to be no reasonable method to account for it with FL whereas the stochastic model includes volume uncertainty

    Tyre recycling utilising molten metal – risk assessment of a laboratory scale investigation

    Get PDF
    This paper describes the process undertaken prior to the commencement of a proposed tyre laboratory scale experiment carried out in University College Cork, Ireland to identify the hazards, assess the risks, change the design and implement control measures to manage the hazards of the experiment

    Tractable Orders for Direct Access to Ranked Answers of Conjunctive Queries

    Full text link
    We study the question of when we can provide logarithmic-time direct access to the k-th answer to a Conjunctive Query (CQ) with a specified ordering over the answers, following a preprocessing step that constructs a data structure in time quasilinear in the size of the database. Specifically, we embark on the challenge of identifying the tractable answer orderings that allow for ranked direct access with such complexity guarantees. We begin with lexicographic orderings and give a decidable characterization (under conventional complexity assumptions) of the class of tractable lexicographic orderings for every CQ without self-joins. We then continue to the more general orderings by the sum of attribute weights and show for it that ranked direct access is tractable only in trivial cases. Hence, to better understand the computational challenge at hand, we consider the more modest task of providing access to only a single answer (i.e., finding the answer at a given position) - a task that we refer to as the selection problem. We indeed achieve a quasilinear-time algorithm for a subset of the class of full CQs without self-joins, by adopting a solution of Frederickson and Johnson to the classic problem of selection over sorted matrices. We further prove that none of the other queries in this class admit such an algorithm.Comment: 17 page

    Principles of Query Visualization

    Full text link
    Query Visualization (QV) is the problem of transforming a given query into a graphical representation that helps humans understand its meaning. This task is notably different from designing a Visual Query Language (VQL) that helps a user compose a query. This article discusses the principles of relational query visualization and its potential for simplifying user interactions with relational data.Comment: 20 pages, 12 figures, preprint for IEEE Data Engineering Bulleti
    • …
    corecore