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1. Introduction 

An important problem of modern computer science is the development of qual-
ity software. The necessary design of large systems in the 1980s requires other methods 
than the design of smaller systems in the 1960s and becomes more and more an engi-
neering problem. 

There are many different methods to cope with this problem. These methods 
range for example from data driven program development by Jackson [Jac 75] to 
information hiding or data encapsulation by Parnas [Par 72]. 

Computer science calls for programming development systems, which support 
the programming development process by the computer itself. 

After a short suvery of the fundamentals of software specification we want to 
illustrate the use of attribute grammars in commercial data processing. It will be pre-
sented how the well known methods of data driven programming and data encap-
sulation, usually classified as contrary concepts, can be combined by using attribute 
grammars with abstract data types. 

Such attribute grammars represent specifications in a clearly readable form. The 
grammatical definition formalism is used only to the necessary extend. Many imple-
mentation details are encapsulated in abstract data types. 

2. Software Specification 

2.1. Life Cycle Model 

We will use the life cycle model for demonstrating the problems of software de-
sign in different stages of its development. Our point of view is demonstrated in Fig-
ure 1. 

The arrows in Figure 1 represent possible relations between components of the 
life cycle. 

The first problem in software design is to define the exact task of a programming 
system. In all other phases of development the corresponding specifications have to be 
compared and verified with this requirement specification. 
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The programming system undertakes the desired task. 

Application of the Software is Finished 

Figure 1- Life Cycle Model of Software 

Figure 1 also demonstrates that the development of software is not finished after 
its implementation. Maintenance of software is of utmost importance. Experiences in 
software engineering have shown, that maintenance costs can be higher than all ear-
lier development costs. 

If programming systems are not developed in a good manner according to main-
tenance, the application of the software becomes more and more complicated. 

According to Figure 1 software maintenance can influence all specifications of 
a project. The simplest modifications may have an influence on implementation only. 
More complex changes are even more difficult and it is possible, that not all specifi-
cations are updated in the right way. 

In this case different descriptions contain contradictions and the application of 
the project is very difficult. 

The same problems may occur during adaptation of software for further cus-
tomers, which is. necessary from the economic point of view. 

Therefore, modern software engineering requires methods proving the different 
descriptions of software and tools generating one specification from the other auto-
matically or in a dialogue with the sotware engineer. 
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2.2. Specification Methods 

2.2.1. Fundamentals of Specification Methods 

Nowadays, some methods well known from semantic definition of programming 
languages can be found in software specification reports. This is not surprising be-
cause an exact semantic definition of a programming language will also define the 
semantics of all its programs. Therefore, it is logical to use well known sematic defini-
tion methods for describing software. 

Beside specification in natural languages, algebraic, logical and denotational 
specifications are the fundamentals of many methods. 

To illustrate the principles of these methods we will use a simple example, the 
modified telegram problem. The original problem was already studied in [Heh 83], 
[Jac 75], [Noo 75] and [Rec 84]. 

2.2.2. Natural Language Specification 

Specifications in natural languages are easily understood, whereas formal lan-
guages are more difficult to understand. But natural languages have the disadvantage, 
that they are ambiguous. Therefore it is very difficult to write down a precise speci-
fication in a natural language. 

Natural Language Specification of a Simple Telegram Problem 

A program is required to process a stream of telegrams. This stream is available as 
a sequence of words and spaces. The stream is terminated by the occurrence of the 
empty telegram. Each telegram is delimited by the symbol * * The tele-
grams are to be processed to determine for each telegram the number of words with 
more than twelve and the number of words with less than twelve characters. The 
telegrams together with the statistics have to be stored on an outputfile by eliminating 
all but one space between the words. The longest possible word has twenty charac-
ters. For simplicity telegram streams containing telegrams with words longer than 
twenty characters are omitted. 

2.2.3. Logical Specification 

Algebraic specifications conceive programs as being abstract data types arid 
therefore heterogeneous universal algebras. According to.the static character of 
algebras the specification of a program means to define the structure of input and 
output data and the ralations between them. For this purpose sorts representing data 
types, operation symbols describing the "rough" structure of data and auxiliary oper-
ation symbols describing "details" of data are introduced. 

Properties of operations assigned to operation symbols in concrete algebras, and 
therefore properties of data, are described by axioms (systems of term equations). 
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Auxiliary operation symbols and axioms are also used for describing the depend-
encies between input and output data. 

We can get a shorter description using a method known from the definition of 
programming languages (see e.g. [Rie 85]). Then the input telegram stream is con-
sidered as a program. The concrete semantic meaning is the output telegram stream. 
In this case the structure of the input telegram streams is defined only. By axioms all 
input streams are grouped into equivalence classes. Each class represents the abstract 
semantic meaning of the elements of the class. Therefore the axioms must be such that 
a class contains all input telegram streams differing only by the number of spaces 
between the words. Furthermore a class must be defined containing all erroneous 
input telegram streams. 

Fundamental work was done by Goguen and Thatcher [Gog 74] and also by 
Guttag [Gut 75]. The shown approaches are not the only ones. Other possible alge-
braic approaches are proposed for example by Guttag and Horning [Gut 78] using 
routines or by Mallgren [Mai 80] using event algebras. 

Algebraic Specification of the Simple Telegram Problem Sorts 

c - Character Data Type 
w = Word Data Type 
WS - Word Sequence Data Type 
T = Input Telegram Data Type 
TS = Input Telegram Sequence Data Type 
s — Input Telegram Stream Data Type 
OT - - Output Telegram Data Type 
OTS — Output Telegram Sequence Data Type 
OS — Output Telegram Stream Data Type 
p Program Data Type 
N — Integer Data Type 
B - Boolean Data Type 

Operation Symbols 

Formally only operation symbols are defined here. But our comments will al-
ready give an interpretation to increase the readability of the definitions. 

char: — char 
{char £{A, ..., Z, a, ..., z, 0, ..., 9} 
constructs the corresponding character.} 

dig: - dig 
{dig £{0, ..., 9}} 

bool: — bool 
{bool € {true, false}} 

sword: C W 
{Constructs a simple word consisting of one character only.} 

word: fVXC — W 
{Constructs a word by concatenating a word and a character.} 
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sseq: W - WS 
{Constructs a simple word sequence consisting of one word only.} 

seq: WSXW - WS 
{Constructs a word sequence by concatenating a word sequence, a space 
and a word.} 

eseq: WS - WS 
{Constructs a word sequence by appending one space to a word sequence.} 

tel: WS -+ T 
{Constructs from a word sequence a telegram by appending * * * " . } 

stseq: T TS 
{Constructs a simple telegram sequence consisting of one telegram only.} 

tseq: TSXT - TS 
{Constructs a telegram sequence by appending one telegram to a tele-
gram sequence.} 

stream: TS — S 
{Constructs from a telegram stream an input stream by appending 

the empty telegram.} 
outtel: WSXNXN OT 

{Constructs an output telegram by composing a word sequence with the 
integers for short and long words.} 

sotseq: OT -> OTS 
{Constructs a simple output telegram sequence consisting only of one 
output telegram.} 

outseq: OTSX OT - OTS 
{Constructs an output telegram sequence by appending one output tele-
gram to an output telegram sequence.} 

outstream: OTS - OS 
{Constructs from an output telegram sequence an output telegram 
stream.} 

prog: SXOS^P 
{Composes an input telegram stream and an output telegram stream to a 
program.} 

length: W-+N_ 
{For a given word the number of characters is delivered.} 

succ: N — N 
add: NXN —• N 
eq: NXN — B 
le: NXN B 

{These are the well known successor, addition, equal and less or equal 
operators.} 

Auxiliary operation symbols 

isword: 
isws: 
istel : 
ists: 
iss: 

W ^ B 
WS - B 

T — B 
TS-B 

S-+B 
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isotel: 
isots: 
isos: 
isprog: 

isderts: 

isderws: 

is: 

isshort: 

OT 
OTS 

OS p 

B 
B 
B 
B 

{These operators deliver the value true if the corresponding word, word-
sequence, telegram, telegram sequence, telegram stream, output telegram, 
output telegram sequence, output telegram stream or program are well 
formed; otherwise false is delivered.} 

TSXOTS - B 
{If the output telegram stream is derivable from the telegram stream true 
is delivered otherwise false} 

WSXWS^B 
{If the first wordsequence is derivable from the second one then true 
otherwise false is delivered.} 

V/XW- B 
{If the two words are identical the operation delivers true otherwise 
false.} 

W - B 
{If the number of characters of the word is less or equal twelve then true 
otherwise false is delivered.} 

Axioms: 

{JSTs means a variable of sort S.} 
isprog (stream (XT S) , outstream (A'ors))=iss (stream (XS)T) 

& isos (outstream (XOTS)) 
& isderts (X T S , X0TS) 
{A program is well formed if the input telegram stream and the output telegram 
stream are well formed and the output telegram sequence is derivable from the 
input telegram sequence.} 

iss (stream (Z r s))=its (XTS) 
{A telegram stream is well formed if the corresponding telegram sequence is well 
formed.} 

ists (tseq (XTS, Ar
T))=ists (X r s) & istel (XT) 

ists (stseq (AV))=istel (XT) 
{A telegram sequence is well formed if it consists of a telegram sequence and a 
telegram and both are well formed. It is also well formed if it consists of one well 
formed telegram only.} 

istel (tel (AVs))=isws (Xw^) 
{A telegram is well formed if the corresponding word sequence is well formed.} 

isws (eseq (AVs))=isws (AVS) 
isws fseq {Xws, Ay))=isws (^Vs) & is word (Xw) 
isws (sseq (AV)=isword (Xw) 

{A word sequence is well formed if it consists of a well formed word sequence 
followed by a space. It is also well formed if it consists of a word sequence and 
a word and both are well formed. 
If it consists of a word only and this word is well formed the word sequence is 
well formed too.} 
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isword (length (Xw), succ20 (0)) 
{A word is well formed if its length is less than or equal to twenty.} 

length (sword (Xc))=succ (0) 
length (word (Xw, X c)=add (length ( X w , ) succ (0)) 

{The length of the simple word consisting only of one character is one and the 
length of a word consisting of a word followed by a character is the length of 
this word plus one.} 

isos (outstream (To r s))=isots (X0TS) 
{An output telegram stream is well formed if the corresponding output telegram 
sequence is well formed.} 

isots (sotseq (Xor))=isotel (XOT) 
isots (otseq (XOTS, X0T))=isots (X0TS) & isotel (XpT) 

{An output telegram stream is well formed if it consists of one well formed output 
telegram only. It is also well formed if it consists of an output telegram sequence 
and an output telegram and both are well formed.} 

isotel (outtel (sseq (Xw,) XN, 7^)=isshort (Xw) & eq (X, succ (0)) 
& isword (Xw) & eq (YN, 0) 
{If the output telegram consists of one short word only then the number of short 
words is one and the number of long words is zero.} 

isotel (outtel (sseq (Xw), XN, 7W)=(~| isshort (Xwj) & isword (Xw) 
& eq(XN, 0) & eq m (YN, succ (0)) 
{If the output telegram consists only of one word, which is a well formed word 
but not a short word, then the mumber of short words is zero and the number of 
long words is one.} 

isotel (outtel (seq {Xws, Xw), add (XN, succ (0)), YN)-
isotel (outtel {Xws, XN, YN) & isshort (Xw) & isword (Xw) 
{If an output telegram consists of a word sequence and a short word and the 
telegram of the word sequence is a well formed output telegram then the number 
of short words of the whole telegram is equal to the number of short words of this 
telegram plus one. The number of long words is the same in both telegrams, 

isotel (outtel (seq (Xws, Xw), XN, add (YN, SUCC (0)))= 
isotel (outtel (Xws, XN, YN) & ("1 isshort (Xw)) 
& isword (Xw) 

isotel (outtel (eseq (Xws), XN, Fw))=false 
{An output telegram cannot contain more than one space between the words.} 

isotel (outtel (seq ( X w s , Xw), 0, 0))=false 
{An output telegram composed of a word sequence and a word cannot have zero 
short and zero long words.} 

isshort (AV)=le (length (Xw), succ12 (0)) 
{A word is short if it has less than or equal to twelve characters.} 

isderts (stseq (tel (AVs)), sotseq (outtel (Yws, XN, YN))= 
, isderws (Xws, 

isderts (tseq (XTS, tel (AVs)), otseq (X0TS, outtel 
isderts (XTS, XOTS) & isderws (Xws, Yws) 

isderts (tseq (XTS, XT), sotseq (Z0T))=false 
isderts (stseq (XT), otseq (XOTS, XOT))=false 

{An output telegram stream is derivable from a telegram stream if both consists 
of one telegram only and the corresponding word sequences are derivable. It is 
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also derivable if both streams consist of a telegram stream and a word sequence 
and they are derivable correspondingly. But an output stream is not derivable from 
an input stream if one of them is a sequence and the other one is a simple se-
quence.} 

isderws (sseq (Xw), sseq (iV))=is (Xw, Yw) 
isderws (seq (AVs, Xw), seq (Yws, IV))=isderws *VS) 

& is ( X w , Yw) 
isderws (eseq (AVS), 1VS)=isderws (Xws, Yws) 
isderws (seq (AVs> Xw), sseq (IV)=false 
isderws (sseq (Xw), seq (IVS , IV)=false 

{An output word sequence is derivable from an input word sequence if both 
consist of one word only and these words are identical. It is also derivable if both 
sequences consist of a word sequence and a word and the word sequences are 
derivable and the words are identical. If an output word sequence is derivable 
from an input word sequence then the output sequence is also derivable from the 
input word sequence followed by a space. If one sequence is a simple sequence 
and the other is a sequence then the output sequence is not derivable from the 
input sequence.} 

Because of readability the axioms for "is" are omitted. They can be built straight-
forward. "eq", "le", "succ" and "and" are assumed to be standard operations. 

2.2.3. Logical Specification 

Logical specifications are based on predicate calculus. Well known approaches 
are the axiomatic approach introduced by Hoare [Hoa 69] to define the semantics 
of programming languages and the logical programming using the programming 
language PROLOG [Kow 74]. 

Hoare's axiomatic approach 

To define the semantics of a programming language Hoare uses specifications. 
A specification is a string of the form 

{¿}P{B}, 
where p is a part of a program, and A and B are formulas which can be interpreted as 
assertions. Therefore the above specification could be read as: 

"If A is valid before execution of p and p is finished then B is valid after execu-
tion of p (partial correctness)." 

To specify a programming language one needs a finite system of specifications 
consisting of axioms and rules of inference. 

In the case of our simple telegram problem we consider a stream of input tele-
grams as a program. The semantics of this program is defined by the corresponding 
stream of output telegrams. Such a "program" consists of elements from the set 

C = {"A",..., "Z", "a",..., "z", "0", ..., "9", " # " , " * * * * " } 
( # represents one space, 
^ * * represents the end of a telegram) 
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and of the (invisible) concatenation operator which concatenates a part of an input 
stream with an element into a new part of an input stream. 

For the definition of the semantics we need some auxiliary variables: 

output — Part of the output stream corresponding to the treated part of the input 
stream, 

length — Actual number of characters in the actually treated word, 
short — Actual number of short words in the actually treated telegram, 
long — Actual number of long words in the actually treated telegram, 
telno — Number of already treated telegrams. 

length = — 1 means the last telegram of the input stream was treated, length = 0 
means the end of a word was treated. The quintuple (output, length, short, long, telno) 
represents "evaluation" states of our "programs". That means a component of a 
given input stream of telegrams transforms a given quadruple into a new one. Partic-
ularly, a given input stream of telegrams transforms the quintuple (empty, 0, 0, 0, 0) 
into a quintuple with the sought output telegram stream as its first component. 

In the following system of axioms and rules of inference we omit axioms and 
rules for formulas supposing that all formulas are well defined. 

Axioms: 

A = output = o & length = /&/ sr 0 

B = output = o.c & length = 1 + 1 

ce{"A", ..., "Z", "a", ..., V , "0",.. . , "9"} 

The last telegram has not been treated. Therefore the output stream is concate-
nated with the new element c. ("." means concatenation) 

{ ¿ l } # { i ? l } 

{A2} #{£2} 

{,43} #{£3} 

Al = 12<lengths 20 & long= / & output= o 
B1 - length=0 & long= / + 1 & output=o. # 
A2=0<lengths 12 & short=s & output=o 
J32=length=0 & s h o r t = i + 1 & output=o. # 
A3-lengths 0 
53=length=0 

These axioms count the number of short and long words in the actually treated 
telegram. The last axiom secures that only one space occurs between words of the 
output stream. 

{/41}* * * *{51} 

{,42}* * * * {52} 
7 Acta Cybernetica VIII/1 
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,41 = (short =»0 or long>0) & length=0 & output=o 
&te lno=i 

51 = short=0 &long=0 & t e l n o = / + l 
&output=o. .short. # .long. # 

^42=short=0 & long=0 & length=0 & output=0 
& telno notequal 0 

jB2=output=o. .0. # .0. # & length = — 1 

In the first axiom the actual telegram is finished. For this telegram the number of 
short and long words is concatenated to the output stream. 

In the second axiom the last telegram is treated and output contains the output 
telegram stream. 

Rule of inference: 
{P)p\{Q\}, {Q\}p2{Q} 

{P}p\p2{Q} 

where p i is a part of an input stream and 

p2e{"A",..., "Z", "a",..., "z", "0",..., "9", " # " , " * * * *"}. 

This rule enables the composition of specifications and thereby the construction 
of specifications for input streams of telegrams. 

Specification of the simple telegram problem using predicate calculus 

For the definition of the simple telegram problem we use now a finite system of 
Horn clauses (see e.g. [Loy 84]). A Horn clause is a string of the form 

B^A1,...,A„, (*) 

where B, Alt ..., A„ are atoms. 
An atom consists of a n-ary predicate symbol followed by a list of n terms inserted 

in paranthesis. Let x1,...,xK be the only variables occurring in the terms of 
B, Au ..., A„. Then (*) means 

(Vx1,...,xk)(A1&...&An=>B). 

By usual interpretation of formulas we get: _ 
For all values of the variables JC1; ..., xk such that all Ak are valid B is valid too 
(Ai and B are assertions arising from A{ and B respectively). 

For the definition of facts one uses a special kind of Horn clauses: 

B 

Horn clauses for the simple telegram problem (For simplicity we omit the de-
finition of some clauses referring to natural numbers and the concatenation operation 
in terms.): 

To achieve better readability of the clauses we will first give an interpretation of 
the atoms. 
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sum (X, Y,Z) — Z is the sum of X and Y. 
greater (X, Y) — X is greater than Y. 
lessequal (X, Y) — X is less than or equal to Y. 
character (X) — X is a character, 
word {X, L) — X is a word of length L. 
telegram (X , Y) — Y is the output telegram corresponding to the input 

telegram X. 
telegramstream 

(X, Y) — Y is the output telegram 
[telstr (X, F)] stream corresponding to the input telegram steream. 

character (X) - . Xd{"A", ..., "Z" , "a", ..., "z", "0", ..., "9"} 
word {X, 1) — character (X). 
word (AT, LI) — character (X), word (Y, L), sum (L, 1, XI). 
telegram ( # X, F)—telegram (X, F). 
telegram ( X # F , X # Z # , S # L 1 # ) - word (X , L0), 

tel(F, Z # S # L # ) , 
greater (L0, 12), 
lessequal (L0, 20), 
sum (L, 1, LI). 

telegram (X # F, X # Z # S 1 # . L # ) - word (X, L0), 
tel (Y,Z#S#L#), 
lessequal (L0, 12), 
sum (S, 1, SI). 

tel # 0 # 0 # ) — . 
tel (X, F)- telegram (X, F). 
telegramstr * * * * # 0 # 0 # ) - . 
telegramstr (XI, YO) - telegram (X, F), 

telegramstr (I, O). 
telegramstream (XI, YO) — telegram (X, F) 

telegramstr (I, O). 

For a given input telegram stream Ti the corresponding output telegram stream 
is determined (if it exists) beginning from the goal telegramstream (Ti, F). This is 
done by constructing a prove for the goal with the Horn clauses. The variables of the 
Horn clauses are suitably substituted. The determined value of the variable F in the 
goal is the sought output telegram stream. 

2.2.5. Denotational Specification 

The objective of denotational specification is to think of programs as being func-
tions which transform input values into output values. However unlike a program 
which specifies how to compute the function, the denotational specifications merely 
indicate which function the program should compute. 

The fundamentals of this theory were developed by Scott and Strachey [Sco 71] 
to define the semantics of programming languages. They were further developed by 
Stoy [Sto 77]. 

7» 
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To specify our simple telegram problem we will use the meta-language of the 
Vienna Development Method, (see e.g. [Bj0 78]) 

Analogously to the axiomatic approach the starting point is to consider an input 
telegram stream as a program. The semantic meaning of this program is the corre-
sponding output telegram stream. Now, the denotational approach requires the de-
finition of syntactical and semantical domains and the definition of functions deter-
mining the semantic meaning of program parts. Furthermore, we need some functors 
for "pasting together" semantic functions. 

Denotational Specification of the Simple Telegram Problem Syntactic Domains: 

Program = Prog. 
Prog: :Stream Endword. 
Stream=Tel | Telseq. 
Tel::Wordseq Endword. 
Telseq: rStream Tel. 
Wordseq= Word | Words. 
Word: :Charstr Spaces. 
Words: rWordseq Word. 
Charstr=Character | Characters. 
Character=A\...\Z\a\... |z|0|... |9. 
Characters: rCharstr Character. 
Spaces=Space| Spaceseq. 
Space = # . 
Spaceseq::Spaceseq Space. 
Endword = * * * * . 

Sematic Domains: 
OUTTELSTREAM: :OUTTEL* 
OUTTEL: :WORD* END SPACE INT SPACE INT SPACE 
WORD: ¡CHARACTER* SPACE 
CHARACTER = {A, ..., Z, a, ..., z, 0 , . . . , 9} 
INT={0, 1,2,3, ...} 
S P A C E = # 
END= * * * * * 

Elaboration Functions: 
type: eval-program: Program — OUTTELSTREAM 
type: eval-orog: Prog - OUTTELSTREAM 
type: eval-stream: Stream - OUTTELSTREAM 
type: eval-tel: Tel - OUTTEL 
type: eval-wordseq: Wordseq — OUTTEL 
type: eval-word: Word - INTxINT 
type: eval-charstream: Charstream — INT 
type: eval-characters: Characters — INT 

eval-program (p) A eval-prog (p) 
{The result of the function eval-program (p) is the result of the function eval-
prog (/>).} 
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eval-prog (mk-prog (s, e))A 

let z>l=eval-stream (5) 
v2= 

in vl.v2 

{A program p consists of a stream s and an end word e. The result of eval-prog 
(p) is equivalent to the result of eval-stream (s) concatenated by the empty 
telegram.} 

eval-stream (st) A 

cases st: mk-tel (WJ, e) eval-wordseq (WJ), 
mk-telseq (s, t) -»-let vl = eval-stream (s), 

«2=eval-tel (t) 
in vl.v2 

{If the stream st consists of a word sequence ws and the end word e the result of 
eval-stream (st) is the result of eval-wordseq (WJ). 
But if st consists of a stream s and a telegram t eval-stream (st) is equal to the 
concatenation of the results of eval-stream (s) and eval-tel (t).} 

eval-tel (mk-tel (WJ, e)) A eval-wordseq (ws) 

{A telegram consists of a word sequence ws and an end word e. The result of 
eval-tel (?) is equal to the result of eval-wordseq (ws).} 

eval-wordseq (ws) A 

cases wj: mk-word (w) — let (x, >>)=eval-word (w) 
in 

mk-words (sw, w) - • l e t 
(u, v)=eval-word (w), 

* * # z # = eval-wordseq ( JW) 

{If the word sequence ws consists of one word w only the result of eval-wordseq 
(wj) is the composition of w and the result of eval-word (w). 
If wj consists of a wordseqimce JW and a word w the result of eval-wordseq (WJ) 
is a composition of the results of eval-word (W) and eval-wordseq ( JW).} 

eval-word (mk-charstr (cs, s))A 
if eval-charstr (cs)s 12 

then (1, 0) 
else 
if eval-charstr (cs)s 20 

then (0, 1) 
else undefined 

{A word consists of a character stream cs and a space sequence s. The result of 
eval-word (w) is equal to (1,0) or (0,1) depending on the result of eval-chararstr 
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eval-charstr (cs) A 

cases cs: mk-character (c) — 1, 
mk-characters (c)—eval-characters (c) 

{If the character stream cs consists of a character c the result of eval-charstr (cs) 
is equal to one. 
If cs consists of characters c then the result of eval-charstr (CJ) is equal to the 
result of eval-characters (c).} 

eval-characters (mk-characters (cs, c))A 

let x—eval-charstr (cs) 
in x+1 

{Characters ca consist of a character stream cs and a character c. The result of 
eval-characters (ca) is equal to the result of eval-charstr (cs) plus one.} 

2.2.6. Relations Between Fundamentals of Problem, Program 
and Implementation Specification 

A selection of some references related to the topic is given in Figure 2. 
According to the methods for problem and program specification there are many 

tools for implementation specification, which are also influenced by mathematics. 
Figure 2 also presents a classification of some of these tools. 

There is no fixed way from program specification to programming. The software 
engineer can choose all programming methods for every specification. 

But modern methodologies of software engineering try to unify the descriptions 
during the whole life cycle. Especially the implementation specification attains a 
higher level of abstraction and has the form of program or. problem specification. 

There is a good success in logical programming (e.g. PROLOG), in programming 
by grammars (e.g. CDL, HFP) and in programming on a very high level (e.g. 
MODEL). 

All modern methods have in common, that the software engineer is not con-
fronted with all implementation details. In many cases he does not know them. 

He can concentrate upon the main design principles. The details are generated 
automatically (artificial intelligence) or are already implemented (abstract data 
types). 

In our opinion programming by grammar will be more important in future. Watt 
and Madsen [Wat 81] have shown for example, that algebraic, logical and denota-
tional specification can be expressed by extended attribute grammars. 

2.2.7. Grammatical Specification of the simplified telegram problem 

First, we will informally introduce the notion of attribute grammars on the basis 
of grammars of syntactic functions [Rie 83]. 
An attribute grammar is a contextfree grammar 

G = (V, T, S, P) 
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Program Specification 

Natural 
Languages 

Algebraic Spec. 

Burstall 81 
Ganzinger 82 
Gogolla 82 
Goguen 77 
Guttag 75 
Reichel 80 
Riedewald 79, 
Liskov 75 
Wulf 76 

85 

Other Methods 

Logical Spec. 

Apt 82 
Bibel 75 
Colmerauer 78 
Hoare 69 
Kowalski 74 
Pereira 80 
Robinson 77 
Szeredi 77 
Warren 82 

Denotational Spec. 

Allison 83 
Bj orner 82 
Cleavelend 80 
Jones 82 
Lucas 82 
Manna 74 
Scott 71 
Stoy 77 
Tennent 75 

Algorithmic 
Languases 

A L G O L 60/68 
COBOL 61 
F O R T R A N 54 
PASCAL 71 

Programming 
with Abstr. 
Data Types 

Logical . 
Programming 

Programming 
on Very 
High Level 

ADA 79 P L A N N E R 69 L U C I D 77 
A L P H A R D 76 P R O L O G 75 M O D E L 83 
BLISS 73 
CLU 73 
SIMULA 67 

Implementation Specification 

VAL 79 

Programming 
by Grammars 

C D L 76 
ELSA 83 
H F P 81 

Other Methods 

Figure 2. Classification of Problem, Program and Implementation Specification 
Methods and Tools 

F-vocabulary, T-set of terminals, N-set of nonterminals 
V=NUT,' 5-start element, P-set of production rules 

augmented with parameters, auxiliary syntactic functions and semantic functions. 
Auxiliary syntactic functions are necessary to describe the static semantic. 

The rules have the form 

f(pi,.--,pi,)::=f1(pi\..:,p/n})..-fr(pi'>..-,pfn'f) . , 

(Pi1 ,-,p"l,)...Hk ( p ï " p % ) . 
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Hlt..., Hk£ {auxiliary syntactic functions} U {semantic functions}, set of para-
meters, x, y, r, k£ set of integers. 

The telegram problem can be specified in different ways by a grammar. The 
following two methods are possible: 
1. The input and output telegram streams are described by parameters. The start 

symbol has the input telegram stream as input parameter and delivers the output 
telegram stream as the value of the output parameter. 

2. The input telegram stream is described by a context-free grammar and this gram-
mar is augmented by parameters and functions in such a way that the start element 
of the grammar delivers the output telegram stream as the value of the parameter 
of of the start symbol. 

The first method would result in a grammar very similar to our specification 
using Horn clauses. Therefore we will omit this example here. The interested reader 
will very easily get such a grammar. 

Let us demonstrate the second method in full detail. 

Grammatical Specification of the Simple Telegram Problem 
(using the second method) 

I. Semantic functions 

— CATC (|SI, \S2, t S ) 
This function concatenates S2 to 51 and delivers S. 

— CAT3(|S1, JS2, JS3, tS) 
This function delivers 51 S2. # S 3 . # in S. 

— COUNT (|L, \Longl, \Short\, \ Long, \ Short) 
IF L < 12 THEN Long Long I; Short:= Shortly \ 

ELSE Long := Longl +1; Short := Shortl 
FI 

— ADD (M, |B, \C) 
C:=A+B 

II. Auxiliary Syntactic functions 

— OVERLENGTH (IL) 
The actions of the parser are influenced by this function. The application of the 
corresponding rule is possible if L is less or equal to 20 only. 

III. Production rules 

1. Program (f Outstream): :=Telegramstream (t Out) 
" # " Endsymbol 
CAT3 (10«/,\ "0", TO",\Outstream). 

2. Telegramstream (t O): :=Telegram (t 0). 
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3. Telegramstream (tO)::=Telegramstream (\01) 
Telegram (i02) 
CAT2 (iOl, |02 , tO). 

4. Telegram (fO)::= Wordsequence (fOl, tShort, tLong) 
Endsymbol 
CAT3 0O1, \ Short, [Long, \0). 

5. Wordsequence(fO, \Short, \Long)::= 
Word (tO, f Length) 
OVERLENGTH (\Length) 
COUNT 0Length, 1"0", |"0", \Short, \Long). 

6. Wordsequence (fO, \ Short, \Long)::= 
Wordsequence (fOl, \ Short I, \Long\) 
Word (t02, f Length) 
OVERLENGTH (¡Length) 
COUNT (¡Length, \Shortl, \Long\, 

t Short, \Long 
CAT2(|01, \02, tO). 

7. Word(\Word,\L)-.:— Charactersequence (ffFoni, \L) 
Spacesequence. 

8. Charactersequence (\C, t"l")::=Character (fC). 
9. Charactersequence (\Char, 1 Length): := 

Charactersequence (\Charl, ] Length I) 
Character (\Char 2) 
CAT2 (\Char\, \Char2, \Char) 
ADD (\Length\, fLength). 

10. Character(f"A")::="A". 

35. Character ( f "Z" ) : :="Z" . 
36. Character ( t " f l " ) : := 'V . 

51. Character ( t 'V ' ) : :="2" . 
52. Character ( t"0"): :="0". 

62. Character (f"9") : :="9". 
63 Endsymbol::= . 
64. Spacesequence : : = " # " . 
65. Spacesequence ::= Spacesequence " # " . 

2.3. Programming with Production Rules 

The relations of methods, which were developed independently for using pro-
duction rules in programming, are the result of current research. 

Figure 3 shows some interesting relations between attribute grammars and logical 
programming. 

The world wide interest in logical programming and the relations of Figure 3 
support our opinion to study applications of attribute grammars in software engi-
neering. ? ' 
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Programming with Production Rules 

Programming with 
Attribute Grammars 

Attribute Grammars 
Knuth 68 

Two-Level Grammars 
van Wijngaarden 68 

I 
I 

Grammars of Syntactic 
Functions 

Riedewald 71 

Affix Grammars 
Köster 71 

Programming with 
Logical Rules 

Thè Semantics of 
Predicate Logic as 
Programming Language 

Kowalski 74 

PROLOG 
Roussel 75 

Grammars and Predicate Logic 
Koch 81 

A Version of PROLOG 
Based on the Notion 
of Two-Level 
Grammar 

Mahiszynski 82 

Beyond PROLOG: 
Software 
Specification 
by Grammar 

Wilson 82 

I I 

Implementation of 
an Attribute 
Grammar with PROLOG 

Logrippo, 
Skuce 83 

Figure 3. Some Relations Between Programming Methods Using Production Rules 

2.4. Some Software Development Methods and Tools with 
Different Use of Data and Information 

. We want to discuss some other arguments supporting the application of attrib-
ute grammars in software development. Let us first have a look at some methods and 
tools supporting the use of data and information in different kinds. Figure 4 is an 
attempt to classify some methods and tools. Such tools can also be used in another 
way, of course, but they were mainly designed for this purpose. 
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Programming Method 

Data Encapsulation 

Attribute 
Grammars 

Languages 
with .Abstract 
Data Types 

ADA 79 
ALPHARD 76 
BLISS 73 
CLU 77 
SIMULA 67 

Rechenberg 84 ^ -
Forbrig 84 

Data Driven Programming 

Attribute 
Grammars 

CDL76 
Hehner 83 
Hughes 79 
Logrippo 83 
Noonan 75 

Very High 
Level 
Languages 

I 
MODEL 83 
LUCID 77 
VAL 79 

Rechenberg 84 {with data 
Forbrig 84 • encapsulation}' 

Problem Driven Programming 
{without data encapsulation} 

Attribute 
Grammars 

Maluszytiski 82 

Algorithm Driven Programming 
{without data encapsulation} 

Programming in 
Predicate Calc. 

PROLOG 75 
PLANNER 69 

/ 
Attribute 
Grammars 

I 
CDL 76 
ELSA 83 
HFP 81 

Functional Programming 
Backus 78 

•Algorithmic 
Languages 

ALGOL 60/86 
COBOL 61 
FORTRAN. 54 
PASCAL 71 
PL/I 67 

Figure 4. Classification of some Programming Methods and Tools 

The following results can be obtained from Figure 4: 
1. Attribute grammars are applied in all classified fields. 
2. The programming language CDL can be used in a data driven and algorithm 

driven way. 5' 
3. Attribute grammars can be combined with data encapsulation. 
4. Attribute grammars can be used to combine data driven programming and data 

encapsulation. 
The method of data driven programming by attribute grammars with abstract 

data types was discussed in Rostock in [For 84 a]. Some similar results can be found 
in [Rec 84]. Rechenberg proposes attribute grammars mainly as a tool for program 
specification. The implementation is suggested by top-down programming. 

We will mainly use attribute grammars as input for a translator writing system. 
Examples of data driven data processing using attribute grammars with abstract data 
types will be presented in the following section. 
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2.5. Data Driven Programming with Abstract Data Types 

2.5.1. Attribute Grammars and Abstract Data Types 

We will extend the definition of an attribute grammar by abstract data types. The 
context-free grammar is not only augemented with parameters, semantic functions 
and syntactic functions but also with functions of abstract data types. 

That means 
•Hi, ..., Hk£{semantic functions} U{syntactic functions} U{functions of abstract 
data types}. 

These grammars are more effective to implement, because not all information 
has to be transfered a long way via parameters. 

In our opinion attribute grammars with abstract data types are better to read and 
write. They can better be maintained. 

2.5.2. Examples 

2.5.2.1. Grammatical Specification of the Simple Telegram Problem 

I. Abstract data types 

* File of output telegram stream with statistics 
— OPEN-OUTFILE, CLOSE-OtiTFILE 
. These functions open and close the file. 

— OUTWORD (iWord, \Length) 
The "Word" with given length is stored on the file. 

— OUTCOUNT ([Short, \Long) 
The number of long and short records of the current telegram are stored on 
the file according to the specification. Short. #Long. #) 

II. Semantic functions 

We use the semantic functions of our example in section 2.2.7. 

III*. Aixitiary syntactic functions 

We use the syntactic functions of the example in section 2.2.7. 

IV. Production rules 

1.. Program ::=Begin Stream CLOSE-OUTFILE. 
.2. Begin ::=OPEN-OUTFILE. 
3. Stream::=Telegramstream. " # " Endsymbol 

OUTCOUNT 0"0" , J"0"). . 
-4. Telegramstream: :=Telegram. 
5. Telegramstream::=Telegramstream Telegram. • -
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6. Telegram ::=Wordsequence (t Short, \Long) 
Endsymbol 
OUTCOUNT (\Short, \Long). 

7. Wordsequence (f Short, \ Long): := Word (t Word, t L) 
OVERLENGTH (J i ) 
COUNT (\L, J"0", r '0" , \ Short, fLong) 
OUT WORD ([Word, \L). 

8.Wordsequence (t Short, \ Long): := 
Wordsequence (\Shortl, ¡Longl) 

Word (\Word, \L) 
OVERLENGTH (\L) 
COUNT ( |L, ¡Short], [Longl, \Short, fLong) 
OUTWORD (¡Word, \L). 

9. Word (t Word, t L): :=Charactersequence (t Word, \L) 
Spacesequence. 

10. Charactersequence (fC, t "!")::=Character (|C). 
11. Charactersequence (f C, t L) : := 

Charactersequence (fCl, f Z.1) 
Character (fC2) 
CAT2 (JC1, \C2, tC) 
ADD ([L\, |"1", tL) . 

12. Character (f"A") : :="A". 

37. Character ( f " Z " ) : : = " Z " . 
38. Character (t "a"): :="a". 

53. Character (t"z"): "z". 
54. Character (f"0") :="0". 

64. Character (f"9")::= "9". 
65. Endsymbol: 
66. Spacesequence : :=" # " . 
67. Spacesequence ::=Spacesequence " # " . 

If standard technices are used as subprograms for lexical analysis only the first 
eight production rules of the grammar are necessary. 

2.5.2.2. Grammatical Specification of a Very Little Commercial Project 

The following task has to be fulfilled by a computer: A special master file con-
tains data of all wage-earners of an enterprise. Another file contains monthly data of 
working time and wages. These two files have to be used to produce pay slips, to 
remit the money through the bank and to report about working time. There is a lot of 
possibilities of monthly data. Therefore, every item has a key and the file contains 
only items different from zero. According to the four kinds of taxes used in the GDR 
the total sum on the pay slip is broken up into four groups. This very little commercial 
project can be descibed by the following attribute grammar. 



110 G. Riedewald—P. Forbrig 

I. Abstract data types 

a) Master file with the functions: 
— OPEN-MASTER-FILE, CLOSE-MASTER-FILE 

These functions open and close the file. 
— MASTER-DATA ([Number, \Group, \ Place, iBank) 

This function delivers for a given number of a wage-earner his number of 
the bank account, his working place and his group of professional classi-
fication. The master file data of this worker are prepared open for other 
functions. 

— MASTER-WAGES (tMoney) 
For the current wage-earner the money per hour is delivered from the 
master file. 

b) File of working time statistics: 
— OPEN-TIME, CLOSE-TIME 
— TIME-BEGIN ([Group, [Place) 

For a given group and working place the entry of statistical data is pre-
pared. 

— TIME-KEY ([Key, [Hours) 
For a group and working place fixed above the given hours are added 
according to the key. 

c) File of data for the bank: 
— OPEN-BANK, CLOSE-BANK 
— BANK-REMIT ([Bank, [Amount) 

The amount is transfered to the given bank account. 

d) File of pay slips: 
— OPEN-PAY-SLIP, CLOSE-PAY-SLIP 
— PAY-SLIP-BEGIN ([Number, 1Place) 

An entry of data is prepared for number and place. 
— PAY-SLIP ([Ami, [Ami, [Am3, [Am4, [Sum) 

The given data are entered on the file. 

II. Semantic functions 

— ADD2 ([SI, [S2, tSum) 
Sum := 51 + S2 

— ADD (J51, |52, 153, lS4, \Sum) 
Sum := 51 + 52+ 53 + 54 

— MULT ([Fl, [F2, t Product) 
Product :=F\*F2 

— DEC 0D1, [D2, [D3, |£>4, [D5, \Value) 
Value:=(((Dl * 10+£>2)* 10+Z>3)* 10+£>4)* 10+ £>5 

III. Auxiliary syntactic functions 

Auxiliary syntactic functions are not necessary for our example. 
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IV. Production rules 

1. Project-run ::=Begin Records CLOSE-MASTER-FILE 
CLOSE-TIME CLOSE-BANK CLOSE-PAY-SLIP. 

2. Begin: :=OPEN-MASTER-FILE OPEN-TIME OPEN-BANK 
OPEN-PAY-SLIP. 

3. Records ::= Record. 
4. Records::= Records Record. 
5. Record ::=Head (\Bank) Items (\Amount) 

BANK-REMIT (|Bank, \Amount). 
6. Head (\Bank): "NO" Earn-No (\ Number) 

MASTER-DATA (¡Number, \Group, \Place, tBank) 
TIME-BEGIN (|Group, \ Place) 
PAY-SLIP-BEGIN (JNumber, \Place). 

7. Items (tAmount): :=Amount 1 ('[Ami) Amount2 (\Am2) 
Amount3 (tAm3) Amount4 (\Am4) 
ADD4(\Aml, \Am2, \Am3, \AmA, fSum) 
PAY-SLIP (\Aml, \Am2, \Am3, \Am4, 
\Surri). 

8. Amountl (Mml)::=Amountsl (\Aml). 
9. Amountl ( t"0")::=. 

10. Amounts 1 (\Aml)::=Aml(iAml). 
11. Amountsl (\Aml): :=Amounts 1 (\Am2) Ami (\Am3) 

ADD2 (\Am2, \Am3,\Aml). 
12. Ami ( t^ml): :="H01" Hours (\H) "M01" Money (\M) 

MULT (\H,\M,\Aml) TIME-KEY "01", \H). 
13. Ami (Mml)::="H01" Hours (\H) MASTER-WAGES (\M) 

MULT (\H, |M,\Aml) TIME-KEY (|"01", \H). 
14. Ami (Mml)::="FM01" Money ( t^wl) . 
15. Ami ( t^ml) : :="FM02" Money (Mml). 
16. Earn-No (\Number): :=Number5 (\Number). 
17. Hours (tH): :=Number5 (\H). 
18. Money (tM)::=Number5 (\M). 
19. Number5 (tK)::=Digit (\Dl) Digit (\D2) Digit (\D3) 

Digit (|Z)4) Digit (\D5) 
DEC (\Dl, \D2, \D3, \DA, j£>5, \V). 

20. Digit ( t"0")::="0". 

30. Digit(t"9")=::"9". 

With respect to simplicity the rules of Amount2, Amount3 and Amount4 were 
omitted. They can be formulated similarly to the rules of Amountl. 

According to rule 1 and 2 the project run consists of opening all abstract data 
types, interpreting a sequence of records and closing all abstract data types. 

Every record has head data and items (rule 5). 
The head data consist of key "NO" followed by the number of a wage-earner 

(rule 6). With the help of this number, data are obtained from the master file and the 
entry of data for statistics and the pay slip are prepared. 
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The items consist of four groups (rule 7). Every group can be a sequence of data 
(rule 11). The empty sequence is possible (rule 9). 

If there are data about hours and money, multiplication is performed and the 
hours are reported for statistics (rule 11). 

If there are only hours the money per hour is taken from the master file (rule 13). 
It is also possible to get money per month (rule 14,15). 

Everybody familiar with attribute grammars can easily get this information from 
the grammar. Therefore, it is an exact document of the project and it supports the 
implementation. 

3. Summary 

After a short survey of the fundamentals of software engineering we have dis-
cussed some classifications of methods and tools. As a result, the combination of data 
driven programming and data encapsulation, usually classified as contrary concepts, 
was developed by using attribute grammars. 

This method was demonstrated by a very little commercial data processing sys-
tem. The advantages of the method presented can be summarized as follows. 

1. Attribute grammars are a good document for design and implementation. 
2. Modularization is supported. 
3. Maintenance can be performed relative easily and locally. 
4. Syntactic analysis of data is automated and the software engineer can concentrate 

upon the main principles of his system. 
5. Grammars can already be tested at very early development phases and the com-

pleteness of the system can be checked. 
6. Simulations can be performed without total implementation of all functions. 
7. Developed projects are broken up into many parts in a natural manner, which 

can run in parallel. 
8. Functions have not to be designed in the same manner. A system of existing 

modules can be composed by using this method. 
9. The method supports the use and design of so called knowledge bases (e.g. as 

abstract data types). 
10. Syntactic analysis algorithm in translator writing systems will be much more ef-

fective than most hand written algorithms. 
11. Automatic error recovery methods can be used (e.g. [For 84 b]). 

Of course, this method is not intended to be applied to all problems of software 
engineering. The application of data driven programming, however, is very well 
supported by a grammar. We think this method to be useful especially in the field of 
commercial data processing. 

Only a short list of references can be given here. A more complete list with about 
300 references related to the topic of software specification can be obtained from the 
authors. 

WILHEM PICK UNIVERSITAET ROSTOCK 
SEKTION INFORMATIK 
D D R 2500 ROSTOCK 
ALBERT EINSTEIN STRASSE 21 
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